摘要
Chapter 15 Molecular coagulation and thrombophilia Björn Dahlbäck, Björn Dahlbäck Department of Translational Medicine, Lund University, University Hospital, Malmö, SwedenSearch for more papers by this authorAndreas Hillarp, Andreas Hillarp Department of Medical Biochemistry, Oslo University Hospital, Oslo, NorwaySearch for more papers by this author Björn Dahlbäck, Björn Dahlbäck Department of Translational Medicine, Lund University, University Hospital, Malmö, SwedenSearch for more papers by this authorAndreas Hillarp, Andreas Hillarp Department of Medical Biochemistry, Oslo University Hospital, Oslo, NorwaySearch for more papers by this author Book Editor(s):Drew Provan, Drew ProvanSearch for more papers by this authorHillard M. Lazarus, Hillard M. LazarusSearch for more papers by this author First published: 08 March 2024 https://doi.org/10.1002/9781394180486.ch15 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary In healthy individuals, a delicate balance between pro- and anticoagulant systems ensures efficient hemostasis and an open vascular system. As sites of vascular damage, a series of procoagulant reactions take place, which are carefully controlled by several anticoagulant proteins. Circumstantial and genetic risk factors increase the risk of venous thrombosis. Circumstantial risk factors are usually short in duration, whereas the genetic risk factors are lifelong. The most common genetic risk factor causing thrombophilia is Factor V Leiden (FVL), a point mutation which eliminates one of the cleave sites for the anticoagulant activated protein C (APC), thus causing APC resistance. Other relatively common thrombophilic risk factors include deficiencies of antithrombin, protein C, and protein S. In this review, we will outline the molecular mechanisms of the pro- and anticoagulant pathways and the molecular genetics of thrombophilia, which is a classical example of a multigenetic disease. Further reading Blood coagulation: introduction and regulation Camire , R., M. ( 2016 ). Rethinking events in the haemostatic process: role of factor V and TFPI . Haemophilia 22 ( Suppl 5 ): 3 – 8 . 10.1111/hae.13004 PubMedWeb of Science®Google Scholar Dahlbäck , B. ( 2005 ). Blood coagulation and its regulation by anticoagulant pathways: genetic pathogenesis of bleeding and thrombotic diseases . J. Intern. Med. 257 : 209 – 223 . 10.1111/j.1365-2796.2004.01444.x CASPubMedWeb of Science®Google Scholar Dahlbäck , B. and Villoutreix , B., O. ( 2005 ). Regulation of blood coagulation by the protein C anticoagulant pathway: novel insights into structure–function relationships and molecular recognition . Arterioscler. Thromb. Vasc. Biol. 25 : 1311 – 1320 . 10.1161/01.ATV.0000168421.13467.82 CASPubMedWeb of Science®Google Scholar Dahlbäck , B. ( 2016 ). Pro- and anticoagulant properties of factor V in pathogenesis of thrombosis and bleeding disorders . Int. J. Lab. Hematol. 38 ( Suppl 1 ): 4 – 11 . 10.1111/ijlh.12508 PubMedWeb of Science®Google Scholar Dahlbäck , B. ( 2017 ). Novel insights into the regulation of coagulation by factor V isoforms, tissue factor pathway inhibitoralpha, and protein S . J. Thromb. Haemost. 15 : 1241 – 1250 . 10.1111/jth.13665 CASPubMedWeb of Science®Google Scholar Dahlbäck , B. ( 2023 , 2023). Natural anticoagulant discovery, the gift that keeps on giving: finding FV-short . J. Thromb. Haemost. 21 ( 4 ): 716 – 727 . 10.1016/j.jtha.2023.01.033 PubMedWeb of Science®Google Scholar Dahlbäck , B. , Guo , L., G. , Livaja-Koshiar , R. , and Tran , S. ( 2017 ). Factor V-short and protein S as synergistic tissue factor pathway inhibitor (TFPIa) cofactors . Res. Pract. Throm. Haemost. 2 : 114 – 124 . 10.1002/rth2.12057 PubMedWeb of Science®Google Scholar Dahlbäck , B. and Tran , S. ( 2022 ). The preAR2 region (1458–1492) in factor V-short is crucial for the synergistic TFPIalpha-cofactor activity with protein S and the assembly of a trimolecular factor Xa-inhibitory complex comprising FV-short, protein S, and TFPIalpha . J. Thromb. Haemost. 20 : 58 – 68 . 10.1111/jth.15547 CASPubMedWeb of Science®Google Scholar Dahlbäck , B. and Tran , S. ( 2022 ). A hydrophobic patch (PLVIVG; 1481–1486) in the B-domain of factor V-short is crucial for its synergistic TFPIa-cofactor activity with protein S and for the formation of the FXa-inhibitory complex comprising FV-short, TFPIa and protein S . J. Thromb. Haemost. 20 : 1146 – 1157 . 10.1111/jth.15690 CASPubMedWeb of Science®Google Scholar Di Cera , E. , Mohammed , B., M. , Pelc , L., A. , and Stojanovski , B.M. ( 2022 ). Cryo-EM structures of coagulation factors . Res. Pract. Thromb. Haemost. 6 ( 7 ): e12830 . doi: 10.1002/rth2.12830 . 10.1002/rth2.12830 PubMedWeb of Science®Google Scholar Esmon , C.T. ( 2014 ). Targeting factor Xa and thrombin: impact on coagulation and beyond . Thromb. Haemost. 111 : 625 – 633 . 10.1160/TH13-09-0730 CASPubMedWeb of Science®Google Scholar Furie , B. and Furie , B.C. ( 2005 ). Thrombus formation in vivo . J. Clin. Investig. 115 : 3355 – 3362 . 10.1172/JCI26987 CASPubMedWeb of Science®Google Scholar Long , A.T. , Kenne , E. , Jung , R. et al . ( 2016 ). Contact system revisited: an interface between inflammation, coagulation, and innate immunity . J. Thromb. Haemost. 14 : 427 – 437 . 10.1111/jth.13235 CASPubMedWeb of Science®Google Scholar Naudin , C. , Burillo , E. , Blankenberg , S. et al . ( 2017 ). Factor XII contact activation . Semin. Thromb. Hemost. 43 : 814 – 826 . 10.1055/s-0036-1598003 CASPubMedWeb of Science®Google Scholar Mann , K.G. , Brummel-Ziedins , K. , Orfeo , T. , and Butenas , S. ( 2006 ). Models of blood coagulation . Blood Cells Mol. Dis. 36 : 108 – 117 . 10.1016/j.bcmd.2005.12.034 CASPubMedWeb of Science®Google Scholar Mast , A.E. and Ruf , W. ( 2022 ). Regulation of coagulation by tissue factor pathway inhibitor: implications for hemophilia therapy . J. Thromb. Haemost. 20 : 1290 – 1300 . 10.1111/jth.15697 CASPubMedWeb of Science®Google Scholar Morrissey , J.H. and Smith , S.A. ( 2015 ). Polyphosphate as modulator of hemostasis, thrombosis and inflammation . J. Thromb. Haemost. 13 ( Suppl 1 ): S92 – S97 . 10.1111/jth.12896 CASPubMedWeb of Science®Google Scholar Papareddy , P. , Rossnagel , M. , Doreen Hollwedel , F. et al . ( 2019 ). A human antithrombin isoform dampens inflammatory responses and protects from organ damage during bacterial infection . Nat. Microbiol. 4 : 2442 – 2455 . 10.1038/s41564-019-0559-6 PubMedWeb of Science®Google Scholar Petrillo , T. , Ayombil , F. , Van't Veer , C. , and Camire , R.M. ( 2021 ). Regulation of factor V and factor V-short by TFPIalpha: relationship between B-domain proteolysis and binding . J. Biolumin. Chemilumin. 296 : 100234 . CASGoogle Scholar Rau , J.C. , Beaulieu , L.M. , Huntington , J.A. , and Church , F.C. ( 2007 ). Serpins in thrombosis, hemostasis and fibrinolysis . J. Thromb. Hemost. 5 ( Suppl 1 ): 102 – 115 . 10.1111/j.1538-7836.2007.02516.x CASPubMedWeb of Science®Google Scholar Rezaie , A.R. and Giri , H. ( 2020 ). Anticoagulant and signaling functions of antithrombin . J. Thromb. Haemost. 18 : 3142 – 3153 . 10.1111/jth.15052 CASPubMedWeb of Science®Google Scholar Vincent , L.M. , Tran , S. , Livaja , R. et al . ( 2013 ). Coagulation factor V (A2440G) causes East Texas bleeding disorder via TFPIα . J. Clin. Invest. 123 : 3777 – 3787 . 10.1172/JCI69091 CASPubMedWeb of Science®Google Scholar Molecular genetics of venous thromboembolism, APC resistance, and FV Leiden Bertina , R.M. , Koeleman , B.P. , Koster , T. et al . ( 1994 ). Mutation in blood coagulation factor V associated with resistance to activated protein C . Nature 369 : 64 – 67 . 10.1038/369064a0 CASPubMedWeb of Science®Google Scholar Bezemer , I.D. , Bare , L.A. , Doggen , C.J.M. et al . ( 2008 ). Gene variants associated with deep venous thrombosis . J. Am. Med. Assoc. 299 : 1306 – 1314 . 10.1001/jama.299.11.1306 CASPubMedWeb of Science®Google Scholar Castoldi , E. and Rosing , J. ( 2010 ). APC resistance: biological basis and acquired influences . J. Thromb. Haemost. 8 : 445 – 453 . 10.1111/j.1538-7836.2009.03711.x CASPubMedWeb of Science®Google Scholar Castoldi , E. , Hezard , N. , Mourey , G. et al . ( 2021 ). Severe thrombophilia in a factor V-deficient patient homozygous for the Ala2086Asp mutation (FV Besancon) . J. Thromb. Haemost. 19 : 1186 – 1199 . 10.1111/jth.15274 CASPubMedWeb of Science®Google Scholar Dahlbäck , B. , Carlsson , M. , and Svensson , P.J. ( 1993 ). Familial thrombophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: prediction of a cofactor to activated protein C . Proc. Natl. Acad. Sci. U.S.A. 90 : 1004 – 1008 . 10.1073/pnas.90.3.1004 CASPubMedWeb of Science®Google Scholar Elsebaie , M.A.T. , van Es , N. , Langston , A. et al . ( 2019 ). Direct oral anticoagulants in patients with venous thromboembolism and thrombophilia: a systematic review and meta-analysis . J. Thromb. Haemost. 17 ( 4 ): 645 – 656 . 10.1111/jth.14398 PubMedWeb of Science®Google Scholar Greengard , J.S. , Sun , X. , Xu , X. et al . ( 1994 ). Activated protein C resistance caused by Arg506Gln mutation in factor Va . Lancet 343 : 1361 – 1362 . 10.1016/S0140-6736(94)92497-X CASPubMedWeb of Science®Google Scholar Griffin , J.H. , Evatt , B. , Wideman , C. , and Fernandez , J.A. ( 1993 ). Anticoagulant protein C pathway defective in majority of thrombophilic patients . Blood 82 : 1989 – 1993 . 10.1182/blood.V82.7.1989.1989 CASPubMedWeb of Science®Google Scholar Heit , J.A. ( 2008 ). The epidemiology of venous thromboembolism in the community . Arterioscler. Thromb. Vasc. Biol. 28 : 370 – 372 . 10.1161/ATVBAHA.108.162545 CASPubMedWeb of Science®Google Scholar Khan , F. , Tritschler , T. , Kahn , S.R. , and Rodger , M.A. ( 2021 ). Venous thromboembolism . Lancet 398 ( 10294 ): 64 – 77 . 10.1016/S0140-6736(20)32658-1 CASPubMedWeb of Science®Google Scholar Koster , T. , Rosendaal , F.R. , de Ronde , H. et al . ( 1993 ). Venous thrombosis due to poor anticoagulant response to activated protein C: Leiden Thrombophilia Study . Lancet 342 : 1503 – 1506 . 10.1016/S0140-6736(05)80081-9 CASPubMedWeb of Science®Google Scholar Lindqvist , P.G. , Svensson , P.J. , Dahlbäck , B. , and Marsal , K. ( 1998 ). Factor V R506Q mutation (activated protein C resistance) associated with reduced intrapartum blood loss: a possible evolutionary selection mechanism . Thromb. Hemost. 79 : 69 – 73 . 10.1055/s-0037-1614222 CASPubMedWeb of Science®Google Scholar Nogami , K. , Shinozawa , K. , Ogiwara , K. et al . ( 2014 ). Novel FV nutation (W1920R, FVNara) associated with serious deep vein thrombosis and more potent APC resistance relative to FVLeiden . Blood 123 : 2420 – 2428 . 10.1182/blood-2013-10-530089 CASPubMedWeb of Science®Google Scholar Pezeshkpoor , B. , Castoldi , E. , Mahler , A. et al . ( 2016 ). Identification and functional characterization of a novel F5 mutation (Ala512Val, FVBonn) associated with activated protein C resistance . J. Thromb. Haemost. 14 : 1353 – 1363 . 10.1111/jth.13339 CASPubMedWeb of Science®Google Scholar Svensson , P.J. and Dahlbäck , B. ( 1994 ). Resistance to activated protein C as a basis for venous thrombosis . N. Engl. J. Med. 330 : 517 – 522 . 10.1056/NEJM199402243300801 CASPubMedWeb of Science®Google Scholar Vandenbroucke , J.P. , Koster , T. , Briet , E. et al . ( 1994 ). Increased risk of venous thrombosis in oral-contraceptive users who are carriers of factor V Leiden mutation . Lancet 344 : 1453 – 1457 . 10.1016/S0140-6736(94)90286-0 CASPubMedWeb of Science®Google Scholar Voorberg , J. , Roelse , J. , Koopman , R. et al . ( 1994 ). Association of idiopathic venous thromboembolism with single point-mutation at Arg506 of factor V . Lancet 343 : 1535 – 1536 . 10.1016/S0140-6736(94)92939-4 CASPubMedWeb of Science®Google Scholar Wolberg , A.S. , Rosendaal , F.R. , Weitz , J.I. et al . ( 2015 ). Venous thrombosis . Nat. Rev. Dis Primers. 7 ( 1 ): 15006 . 10.1038/nrdp.2015.6 Google Scholar Zöller , B. , Svensson , P.J. , Dahlbäck , B. et al . ( 2020 ). Genetic risk factors for venous thromboembolism . Expert Rev. Hematol. 13 ( 9 ): 971 – 981 . 10.1080/17474086.2020.1804354 PubMedWeb of Science®Google Scholar Antithrombin deficiency Van Cott , E.M. , Orlando , C. , Moore , G.W. et al . ( 2020 ). For the subcommittee on plasma coagulation inhibitors. Recommendations for clinical laboratory testing for antithrombin deficiency; communication from the SSC of the ISTH . J. Thromb. Haemost. 18 : 17 – 22 . 10.1111/jth.14648 PubMedWeb of Science®Google Scholar Mulder , R. , Croles , F.N. , Mulder , A.B. et al . ( 2017 ). SERPINC1 gene mutations in antithrombin deficiency . B. J. Haematol. 178 : 279 – 285 . 10.1111/bjh.14658 CASPubMedWeb of Science®Google Scholar de la Morena-Barrio , M.E. , Martínez-Martínez , I. , de Cos , C. et al . ( 2016 ). Hypoglycosylation is a common finding in antithrombin deficiency in the absence of a SERPINC1 gene defect . J. Thromb. Haemost. 14 : 1549 – 1560 . 10.1111/jth.13372 CASPubMedWeb of Science®Google Scholar Corral , J. , del la Morena-Barrio , M.E. , and Vicente , V. ( 2018 ). The genetics of antithrombin . Thromb. Res. 169 : 23 – 29 . 10.1016/j.thromres.2018.07.008 CASPubMedWeb of Science®Google Scholar Bravo-Pérez , C. , de la Morena-Barrio , M.E. , de la Morena-Barrio , B. et al . ( 2022 ). Molecular and clinical characterization of transient antithrombin deficiency: a new concept in congenital thrombophilia . Am. J. Hematol. 97 : 216 – 225 . 10.1002/ajh.26413 CASPubMedWeb of Science®Google Scholar Protein C system and protein C deficiency Dahlbäck , B. and Villoutreix , B.O. ( 2005 ). Regulation of blood coagulation by the protein C anticoagulant pathway: novel insights into structure–function relationships and molecular recognition . Arterioscler. Thromb. Vasc. Biol. 25 : 1311 – 1320 . 10.1161/01.ATV.0000168421.13467.82 CASPubMedWeb of Science®Google Scholar Esmon , C.T. ( 2012 ). Protein C anticoagulant system –anti-inflammatory effects . Semin. Immunopathol. 34 : 127 – 132 . 10.1007/s00281-011-0284-6 CASPubMedWeb of Science®Google Scholar Griffin , J.H. , Zlokovic , B.V. , and Mosnier , L.O. ( 2015 ). Activated protein C: biased for translation . Blood 127 : 2898 – 2907 . 10.1182/blood-2015-02-355974 Web of Science®Google Scholar Segers , K. , Dahlbäck , B. , and Nicolaes , G.A. ( 2007 ). Coagulation factor V and thrombophilia: background and mechanisms . Thromb. Hemost. 98 : 530 – 542 . 10.1160/TH07-02-0150 CASPubMedWeb of Science®Google Scholar Dinarvand , P. and Moser , K.A. ( 2019 ). Protein C deficiency . Arch. Pathol. Lab Med. 143 : 1281 – 1285 . 10.5858/arpa.2017-0403-RS CASPubMedWeb of Science®Google Scholar Seidel , H. , Haracska , B. , Naumann , J. et al . ( 2020 ). Laboratory limitations of excluding hereditary protein C deficiency by chromogenic assay: discrepancies of phenotype and genotype . Clini. Appl. Thromb. Haemost. 26 : 1 – 13 . Web of Science®Google Scholar Cooper , P.C. , Pavlova , A. , Moore , G.W. et al . ( 2020 ). Recommendations for clinical laboratory testing for protein C deficiency, for the subcommittee on plasma coagulation inhibitors of the ISTH . J. Thromb. Haemost. 18 : 271 – 277 . 10.1111/jth.14667 CASPubMedWeb of Science®Google Scholar Minford , A. , Brandão , L.R. , Othman , M. et al . ( 2022 ). Diagnosis and management of severe congenital protein C deficiency (SCPCD): communication from the SSC of the ISTH . J. Thromb. Haemost. 20 : 1735 – 1743 . 10.1111/jth.15732 CASPubMedWeb of Science®Google Scholar Protein S and protein S deficiency Dahlbäck , B. ( 2007 ). The tale of protein S and C4b-binding protein, a story of affection . Thromb. Hemost. 98 : 90 – 96 . 10.1160/TH07-04-0269 PubMedWeb of Science®Google Scholar Dahlbäck , B. ( 2018 ). Vitamin K-dependent protein S: beyond the protein C pathway . Semin. Thromb. Hemost. 44 : 176 – 184 . 10.1055/s-0037-1604092 PubMedWeb of Science®Google Scholar Gandrille , S. , Borgel , D. , Sala , N. et al . ( 2000 ). Protein S deficiency: a data base of mutations. Summary of the first update . Thromb. Haemost. 84 : 918 – 934 . 10.1055/s-0037-1614137 CASPubMedWeb of Science®Google Scholar Garcia de Frutos , G. , Fuentes-Prior , P. , Hurtado , B. , and Sala , N. ( 2007 ). Molecular basis of protein S deficiency . Thromb. Haemost. 98 : 543 – 556 . 10.1160/TH07-03-0199 CASPubMedWeb of Science®Google Scholar Gierula , M. and Ahnstrom , J. ( 2020 ). Anticoagulant protein S-New insights on interactions and functions . J. Thromb. Haemost. 18 : 2801 – 2811 . 10.1111/jth.15025 CASPubMedWeb of Science®Google Scholar Johansson , A.M. , Hillarp , A. , Säll , T. et al . ( 2005 ). Large deletions of the PROS1 gene in a large fraction of mutation negative patients with protein S deficiency . Thromb. Haemost. 94 : 951 – 957 . 10.1160/TH05-06-0392 CASPubMedWeb of Science®Google Scholar Peraramelli , S. , Rosing , J. , and Hackeng , T.M. ( 2012 ). TFPI-dependent activities of protein S . Thromb. Res. 129 ( Suppl 2 ): S23 – S26 . 10.1016/j.thromres.2012.02.024 CASPubMedWeb of Science®Google Scholar Sim , M.M.S. and Wood , J.P. ( 2022 ). Dysregulation of protein S in COVID-19 . Best Pract. Res. Clin. Haematol. 35 : 101376 . 10.1016/j.beha.2022.101376 CASPubMedWeb of Science®Google Scholar Marlar , R.A. , Gausman , J.N. , Tsuda , H. et al . ( 2020 ). Recommendations for clinical laboratory testing for protein S deficiency: communications from the SSC Committee plasma coagulation inhibitors of the ISTH . J. Thromb. Haemost. 19 : 68 – 74 . 10.1111/jth.15109 Web of Science®Google Scholar Brinkman , H.J.M. , Ahnström , J. , Casatoldi , E. et al . ( 2021 ). Pleiotropic anticoagulant functions of protein S, consequences for the clinical laboratory. Communications from the SSC of the ISTH . J. Thromb. Haemost. 19 : 281 – 286 . 10.1111/jth.15108 CASPubMedWeb of Science®Google Scholar Prothrombin gene mutations Bulato , C. , Radu , C.M. , Campello , E. et al . ( 2016 ). New prothrombin mutation (Arg596Trp, prothrombin Padua 2) associated with venous thromboembolism . Arterioscler. Thromb. Vasc. Biol. 36 : 1022 – 1029 . 10.1161/ATVBAHA.115.306914 CASPubMedWeb of Science®Google Scholar Danckwardt , S. , Hartmann , K. , Gehring , N.H. et al . ( 2006 ). 3′ End processing of the prothrombin mRNA in thrombophilia . Acta Haematol. 115 : 192 – 197 . 10.1159/000090934 CASPubMedWeb of Science®Google Scholar Dziadosz , M. and Baxi , L.V. ( 2016 ). Global prevalence of prothrombin gene mutation G20210A and implications in women's health: a systematic review . Blood Coagul. Fibrinolysis 27 : 481 – 489 . 10.1097/MBC.0000000000000562 CASPubMedWeb of Science®Google Scholar Gehring , N.H. , Frede , U. , Neu-Yilik , G. et al . ( 2001 ). Increased efficiency of mRNA 3′ end formation: a new genetic mechanism contributing to hereditary thrombophilia . Nat. Genet. 28 : 389 – 392 . 10.1038/ng578 CASPubMedWeb of Science®Google Scholar Miyawaki , Y. , Suzuki , A. , Fujita , J. et al . ( 2012 ). Thrombosis from a prothrombin mutation conveying antithrombin resistance . N. Engl. J. Med. 366 : 2390 – 2396 . 10.1056/NEJMoa1201994 CASPubMedWeb of Science®Google Scholar Poort , S.R. , Rosendaal , F.R. , Reitsma , P.H. , and Bertina , R.M. ( 1996 ). A common genetic variation in the 3′-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis . Blood 88 : 3698 – 3703 . 10.1182/blood.V88.10.3698.bloodjournal88103698 CASPubMedWeb of Science®Google Scholar VTE and genome-wide association studies Lindström , S. , Wang , L. , Smith , E.N. et al . ( 2019 ). Genomic and transcriptomic association studies identify 16 novel susceptibility loci for venous thromboembolism . Blood 134 : 1645 – 1657 . 10.1182/blood.2019000435 PubMedWeb of Science®Google Scholar Klarin , D. , Busenkell , E. , Judy , R. et al . ( 2019 ). Genome-wide association analysis of venous thromboembolism identifies new risk loci and genetic overlap with arterial vascular disease . Nat. Genet. 51 : 1574 – 1579 . 10.1038/s41588-019-0519-3 CASPubMedWeb of Science®Google Scholar Zöller , B. , Svensson , P.J. , Dahlbäck , B. et al . ( 2020 ). Genetic risk factors for venous thromboembolism . Exp. Rev. Hematol. 13 : 971 – 981 . 10.1080/17474086.2020.1804354 PubMedWeb of Science®Google Scholar Ghouse , J. , Tragante , V. , Ahlberg , G. et al . ( 2023 ). Genome-wide meta-analysis identifies 93 risk loci and enables risk prediction equivalent to monogenic forms of venous thromboembolism . Nat. Genet. https://doi.org/10.1038/s41588-022-01286-7 55 : 399 – 409 . 10.1038/s41588-022-01286-7 CASPubMedWeb of Science®Google Scholar Management of thrombophilia Moran , J. and Bauer , K.A. ( 2020 ). Managing thromboembolic risk in patients with hereditary and acquired thrombophilias . Blood 135 : 344 – 350 . 10.1182/blood.2019000917 PubMedWeb of Science®Google Scholar Stevens , S.M. , Woller , S.C. , Baumann Kreuziger , L. et al . ( 2021 ). Antithrombotic therapy for VTE disease: second update of the CHEST guideline and expert panel report . CHEST 160 : e545 – e608 . 10.1016/j.chest.2021.07.055 CASPubMedWeb of Science®Google Scholar Khan , F. , Tritschler , T. , Kahn , S.R. , and Rodger , M.A. ( 2021 ). Venous thromboembolism . Lancet 398 : 64 – 77 . 10.1016/S0140-6736(20)32658-1 CASPubMedWeb of Science®Google Scholar Molecular Hematology, Fifth Edition ReferencesRelatedInformation