清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Zeolites Containing Heteroatoms/Metal Nanoparticles for Catalytic Conversion of Light Alkanes

杂原子 催化作用 金属 纳米颗粒 化学 组合化学 纳米技术 化学工程 材料科学 光化学 有机化学 工程类 戒指(化学)
作者
Hang Zhou,Yan Wang,Feng‐Shou Xiao
标识
DOI:10.1002/9783527839384.ch15
摘要

Chapter 15 Zeolites Containing Heteroatoms/Metal Nanoparticles for Catalytic Conversion of Light Alkanes Hang Zhou, Hang Zhou Zhejiang University, Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Yuhangtang Road 866, Hangzhou, 310027 ChinaSearch for more papers by this authorLiang Wang, Liang Wang Zhejiang University, Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Yuhangtang Road 866, Hangzhou, 310027 ChinaSearch for more papers by this authorFeng-Shou Xiao, Feng-Shou Xiao Zhejiang University, Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Yuhangtang Road 866, Hangzhou, 310027 ChinaSearch for more papers by this author Hang Zhou, Hang Zhou Zhejiang University, Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Yuhangtang Road 866, Hangzhou, 310027 ChinaSearch for more papers by this authorLiang Wang, Liang Wang Zhejiang University, Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Yuhangtang Road 866, Hangzhou, 310027 ChinaSearch for more papers by this authorFeng-Shou Xiao, Feng-Shou Xiao Zhejiang University, Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Yuhangtang Road 866, Hangzhou, 310027 ChinaSearch for more papers by this author Book Editor(s):Peng Wu, Peng Wu East China Normal University, North Zhongshan Rd. No. 3663, Shanghai, 200062 ChinaSearch for more papers by this authorHao Xu, Hao Xu East China Normal University, North Zhongshan Rd. No. 3663, Shanghai, 200062 ChinaSearch for more papers by this author First published: 08 March 2024 https://doi.org/10.1002/9783527839384.ch15 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Producing light olefins, oxygenates, and other value-added chemicals starting from light alkanes – the primary components in natural gas and shale gas – has been one of the most studied topics for decades. As yet several challenges, including insufficient catalytic activity under mild conditions, poor selectivity toward object products, and short catalytic lives, still hindered their commercial application. The incorporation of active metallic heteroatoms into the framework of zeolites (forming metallosilicates) or fixation of metal nanoparticles into zeolite crystals (forming metal@zeolites) has emerged as a new series of heterogeneous catalysts, some of which have been demonstrated to be catalytically more active, selective, and stable that steadily outperform the generally supported metals or metal oxides. In this chapter, the development of the strategies for the construction of metallosilicates and metal@zeolite catalysts for the conversion of propane, ethane, and methane is briefly summarized, where the rational preparation and the fundamental principles of optimality of these hybrid catalysts in various reactions are briefly discussed. Finally, a summary and outlook regarding the opportunities for the conversion processes of light olefins using zeolite-based catalysts to meet industrial demands are also presented in the end. References He , M. , Sun , Y. , and Han , B. ( 2013 ). Green carbon science: scientific basis for integrating carbon resource processing, utilization, and recycling . Angew. Chem. Int. Ed. 52 : 9620 – 9633 . https://doi.org/10.1002/anie.201209384 . 10.1002/anie.201209384 CASPubMedWeb of Science®Google Scholar Grant , J.T. , Venegas , J.M. , McDermott , W.P. , and Hermans , I. ( 2018 ). Aerobic oxidations of light alkanes over solid metal oxide catalysts . Chem. Rev. 118 : 2769 – 2815 . https://doi.org/10.1021/acs.chemrev.7b00236 . 10.1021/acs.chemrev.7b00236 CASPubMedWeb of Science®Google Scholar Sun , M. , Zhang , J. , Putaj , P. et al. ( 2018 ). Catalytic oxidation of light alkanes (C1−C4) by heteropoly compounds . Chem. Rev. 118 : 2769 – 2815 . https://doi.org/10.1021/cr300302b . 10.1021/cr300302b PubMedGoogle Scholar Guo , Z. , Liu , B. , Zhang , Q. et al. ( 2014 ). Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry . Chem. Soc. Rev. 43 : 3480 – 3524 . https://doi.org/10.1039/C3CS60282F . 10.1039/c3cs60282f CASPubMedWeb of Science®Google Scholar Morejudo , S.H. , Zanón , R. , Escolástico , S. et al. ( 2016 ). Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor . Science 353 : 563 – 566 . https://doi.org/10.1126/science.aag0274 . 10.1126/science.aag0274 CASPubMedWeb of Science®Google Scholar Schüth , F. ( 2019 ). Making more from methane . Science 363 : 1282 – 1283 . https://doi.org/10.1126/science.aaw7738 . 10.1126/science.aaw7738 CASPubMedWeb of Science®Google Scholar Coors , W.G. , Martínez , A. , Norby , T. et al. ( 2016 ). Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor . Science 353 : 563 – 566 . https://doi.org/10.1126/science.aag0274 . 10.1126/science.aag0274 PubMedGoogle Scholar Sabbe , M.K. , Van Geem , K.M. , Reyniers , M.-F. , and Marin , G.B. ( 2011 ). First principle-based simulation of ethane steam cracking . AIChE J. 57 : 482 – 496 . https://doi.org/10.1002/aic.12269 . 10.1002/aic.12269 CASWeb of Science®Google Scholar Chan , K.Y.G. , Inal , F. , and Senkan , S. ( 1998 ). Suppression of coke formation in the steam cracking of alkanes: ethane and propane . Ind. Eng. Chem. Res. 37 : 901 – 907 . 10.1021/ie9704511 CASWeb of Science®Google Scholar Guo , X. , Fang , G. , Li , G. et al. ( 2014 ). Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen . Science 344 : 616 – 619 . https://doi.org/10.1126/science.1253150 . 10.1126/science.1253150 CASPubMedWeb of Science®Google Scholar Wang , P. , Zhao , G. , Wang , Y. , and Lu , Y. ( 2017 ). MnTiO 3 -driven low-temperature oxidative coupling of methane over TiO 2 -doped Mn 2 O 3 -Na 2 WO 4 /SiO 2 catalyst . Sci. Adv. 3 : e1603180 . 10.1126/sciadv.1603180 Google Scholar Meng , X. , Cui , X. , Rajan , N.P. et al. ( 2019 ). Direct methane conversion under mild condition by thermo-, electro-, or photocatalysis . Chem 5 : 1 – 30 . https://doi.org/10.1016/j.chempr.2019.05.008 . 10.1016/j.chempr.2019.05.008 Web of Science®Google Scholar Chen , S. , Chang , X. , Sun , G. et al. ( 2021 ). Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies . Chem. Soc. Rev. 50 : 3315 – 3354 . https://doi.org/10.1039/D0CS00814A . 10.1039/D0CS00814A CASPubMedWeb of Science®Google Scholar Sattler , J.J.H.B. , Ruiz-Martinez , J. , Santillan-Jimenez , E. , and Weckhuysen , B.M. ( 2014 ). Catalytic dehydrogenation of light alkanes on metals and metal oxides . Chem. Rev. 114 : 10613 – 10653 . https://doi.org/10.1021/cr5002436 . 10.1021/cr5002436 CASPubMedWeb of Science®Google Scholar Otroshchenko , T. , Jiang , G. , Kondratenko , V.A. et al. ( 2021 ). Current status and perspectives in oxidative, non-oxidative and CO 2 -mediated dehydrogenation of propane and isobutane over metal oxide catalysts . Chem. Soc. Rev. 50 : 473 – 527 . https://doi.org/10.1039/D0CS01140A . 10.1039/D0CS01140A CASPubMedWeb of Science®Google Scholar Schlögl , R. ( 2015 ). Heterogeneous catalysis . Angew. Chem. Int. Ed. 54 : 3465 – 3520 . https://doi.org/10.1002/anie.201410738 . 10.1002/anie.201410738 CASPubMedWeb of Science®Google Scholar Del Campo , P. , Martínez , C. , and Corma , A. ( 2021 ). Activation and conversion of alkanes in the confined space of zeolite-type materials . Chem. Soc. Rev. 50 : 8511 – 8595 . https://doi.org/10.1039/D0CS01459A . 10.1039/D0CS01459A CASPubMedWeb of Science®Google Scholar Zhang , Q. , Yu , J. , and Corma , A. ( 2020 ). Applications of zeolites to C1 chemistry: recent advances, challenges, and opportunities . Adv. Mater. 32 : 2002927 . https://doi.org/10.1002/adma.202002927 . 10.1002/adma.202002927 PubMedWeb of Science®Google Scholar Wang , Y. , Tao , Z. , Wu , B. et al. ( 2015 ). Effect of metal precursors on the performance of Pt/ZSM-22 catalysts for n-hexadecane hydroisomerization . J. Catal. 322 : 1 – 13 . https://doi.org/10.1016/j.jcat.2014.11.004 . 10.1016/j.jcat.2014.11.004 CASWeb of Science®Google Scholar Chen , N. , Wang , N. , Ren , Y. et al. ( 2017 ). Effect of surface modification with silica on the structure and activity of Pt/ZSM-22@SiO 2 catalysts in hydrodeoxygenation of methyl palmitate . J. Catal. 345 : 124 – 134 . https://doi.org/10.1016/j.jcat.2016.09.005 . 10.1016/j.jcat.2016.09.005 CASWeb of Science®Google Scholar Pawelec , B. , Mariscal , R. , Navarro , R.M. et al. ( 2004 ). Simultaneous 1-pentene hydroisomerisation and thiophene hydrodesulphurisation over sulphided Ni/FAU and Ni/ZSM-5 catalysts . Appl. Catal. A Gen. 262 : 155 – 166 . https://doi.org/10.1016/j.apcata.2003.11.037 . 10.1016/j.apcata.2003.11.037 CASWeb of Science®Google Scholar Zhu , Q. , Zhou , H. , Wang , L. et al. ( 2022 ). Enhanced CO 2 utilization in dry reforming of methane achieved through nickel-mediated hydrogen spillover in zeolite crystals . Nat. Catal. 5 : 1030 – 1037 . https://doi.org/10.1038/s41929-022-00870-8 . 10.1038/s41929-022-00870-8 CASWeb of Science®Google Scholar Campelo , J.M. , Lafont , F. , and Marinas , J.M. ( 1995 ). Hydroisomerization and hydrocracking of n-heptane on Pt/SAPO-5 and Pt/SAPO-11 catalysts . J. Catal. 156 : 11 – 18 . https://doi.org/10.1006/jcat.1995.1226 . 10.1006/jcat.1995.1226 CASWeb of Science®Google Scholar Geng , C.H. , Zhang , F. , Gao , Z.-X. et al. ( 2004 ). Hydroisomerization of n-tetradecane over Pt/SAPO-11 catalyst . Catal. Today 93–95 : 485 – 491 . https://doi.org/10.1016/j.cattod.2004.06.104 . 10.1016/j.cattod.2004.06.104 CASWeb of Science®Google Scholar Wang , H. , Wang , L. , and Xiao , F.-S. ( 2020 ). Metal@zeolite hybrid materials for catalysis . ACS Cent. Sci. 6 : 1685 – 1697 . https://doi.org/10.1021/acscentsci.0c01130 . 10.1021/acscentsci.0c01130 CASPubMedWeb of Science®Google Scholar Wang , L. , Wang , L. , Meng , X. , and Xiao , F.-S. ( 2019 ). New strategies for the preparation of sinter-resistant metal-nanoparticle-based catalysts . Adv. Mater. 31 : 1901905 . https://doi.org/10.1002/adma.201901905 . 10.1002/adma.201901905 CASPubMedWeb of Science®Google Scholar Wu , Q. , Xu , C. , Zhu , L. et al. ( 2023 ). Recent strategies for synthesis of metallosilicate zeolites . Catal. Today 410 : 2 – 12 . https://doi.org/10.1016/j.cattod.2022.11.022 . 10.1016/j.cattod.2022.11.022 CASWeb of Science®Google Scholar Gordon , C.P. , Engler , H. , Tragl , A.S. et al. ( 2020 ). Efficient epoxidation over dinuclear sites in titanium silicalite-1 . Nature 586 : 708 – 713 . https://doi.org/10.1038/s41586-020-2826-3 . 10.1038/s41586-020-2826-3 CASPubMedWeb of Science®Google Scholar Corma , A. , Nemeth , L.T. , Renz , M. , and Valencia , S. ( 2001 ). Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer-Villiger oxidations . Nature 412 : 423 – 425 . https://doi.org/10.1038/35086546 . 10.1038/35086546 CASPubMedWeb of Science®Google Scholar Rightor , E.G. and Tway , C.L. ( 2015 ). Global energy & emissions reduction potential of chemical process improvements . Catal. Today 258 : 226 – 229 . https://doi.org/10.1016/j.cattod.2015.02.023 . 10.1016/j.cattod.2015.02.023 CASWeb of Science®Google Scholar Corma , A. , Melo , F.V. , Sauvanaud , L. , and Ortega , F. ( 2005 ). Light cracked naphtha processing: controlling chemistry for maximum propylene production . Catal. Today 107–108 : 699 – 706 . https://doi.org/10.1016/j.cattod.2005.07.109 . 10.1016/j.cattod.2005.07.109 CASWeb of Science®Google Scholar Fang , W. , Wang , C. , Liu , Z. et al. ( 2022 ). Physical mixing of a catalyst and a hydrophobic polymer promotes CO hydrogenation through dehydration . Science 377 : 406 – 410 . https://doi.org/10.1126/science.abo0356 . 10.1126/science.abo0356 CASPubMedWeb of Science®Google Scholar Wang , C. , Yang , L. , Gao , M. et al. ( 2022 ). Directional construction of active naphthalenic species within SAPO-34 crystals toward more efficient methanol-to-olefin conversion . J. Am. Chem. Soc. 144 : 21408 – 21416 . https://doi.org/10.1021/jacs.2c10495 . 10.1021/jacs.2c10495 CASPubMedGoogle Scholar Zacharopoulou , V. and Lemonidou , A.A. ( 2018 ). Olefins from biomass intermediates: a review . Catalysts 8 : 2 . https://doi.org/10.3390/catal8010002 . 10.3390/catal8010002 Web of Science®Google Scholar Monai , M. , Gambino , M. , Wannakao , S. , and Weckhuysen , B.M. ( 2021 ). Propane to olefins tandem catalysis: a selective route towards light olefins production . Chem. Soc. Rev. 50 : 11503 – 11529 . https://doi.org/10.1039/D1CS00357G . 10.1039/D1CS00357G CASPubMedWeb of Science®Google Scholar Kytökivi , A. , Jacobs , J.-P. , Hakuli , A. et al. ( 1996 ). Surface characteristics and activity of chromia/alumina catalysts prepared by atomic layer epitaxy . J. Catal. 162 : 190 – 197 . https://doi.org/10.1006/jcat.1996.0276 . 10.1006/jcat.1996.0276 CASWeb of Science®Google Scholar Kumar , M.S. , Hammer , N. , Rønning , M. et al. ( 2009 ). The nature of active chromium species in Cr-catalysts for dehydrogenation of propane: new insights by a comprehensive spectroscopic study . J. Catal. 261 : 116 – 128 . https://doi.org/10.1016/j.jcat.2008.11.014 . 10.1016/j.jcat.2008.11.014 CASWeb of Science®Google Scholar Motagamwala , A.H. , Almallahi , R. , Wortman , J. et al. ( 2021 ). Stable and selective catalysts for propane dehydrogenation operating at thermodynamic limit . Science 373 : 217 – 222 . https://doi.org/10.1126/science.abg7894 . 10.1126/science.abg7894 CASPubMedWeb of Science®Google Scholar Zhu , X. , Wang , T. , Xu , Z. et al. ( 2022 ). Pt-Sn clusters anchored at Al 3+ penta sites as a sinter-resistant and regenerable catalyst for propane dehydrogenation . J. Energy Chem. 65 : 293 – 301 . https://doi.org/10.1016/j.jechem.2021.06.002 . 10.1016/j.jechem.2021.06.002 CASWeb of Science®Google Scholar Liu , L. , Lopez-Haro , M. , Lopes , C.W. et al. ( 2019 ). Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis . Nat. Mater. 18 : 866 – 873 . https://doi.org/10.1038/s41563-019-0412-6 . 10.1038/s41563-019-0412-6 CASPubMedWeb of Science®Google Scholar Liu , L. , Lopez-Haro , M. , Lopes , C.W. et al. ( 2020 ). Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites . Nat. Catal. 3 : 628 – 638 . https://doi.org/10.1038/s41929-020-0472-7 . 10.1038/s41929-020-0472-7 CASWeb of Science®Google Scholar Sun , Q. , Wang , N. , Fan , Q. et al. ( 2020 ). Subnanometer bimetallic platinum–zinc clusters in zeolites for propane dehydrogenation . Angew. Chem. Int. Ed. 59 : 19450 – 19459 . https://doi.org/10.1002/anie.202003349 . 10.1002/anie.202003349 CASPubMedWeb of Science®Google Scholar Ryoo , R. , Kim , J. , Jo , C. et al. ( 2020 ). Rare-earth–platinum alloy nanoparticles in mesoporous zeolite for catalysis . Nature 585 : 221 – 224 . https://doi.org/10.1038/s41586-020-2671-4 . 10.1038/s41586-020-2671-4 CASPubMedWeb of Science®Google Scholar Zhao , D. , Tian , X. , Doronkin , D.E. et al. ( 2021 ). In situ formation of ZnO x species for efficient propane dehydrogenation . Nature 599 : 234 – 238 . https://doi.org/10.1038/s41586-021-03923-3 . 10.1038/s41586-021-03923-3 CASPubMedWeb of Science®Google Scholar Cavani , F. , Ballarini , N. , and Cericola , A. ( 2007 ). Oxidative dehydrogenation of ethane and propane: how far from commercial implementation? Catal. Today 127 : 113 – 131 . https://doi.org/10.1016/j.cattod.2007.05.009 . 10.1016/j.cattod.2007.05.009 CASWeb of Science®Google Scholar Grant , J.T. , Carrero , A. , Goeltl , F. et al. ( 2016 ). Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts . Science 354 : 1570 – 1573 . https://doi.org/10.1126/science.aaf7885 . 10.1126/science.aaf7885 CASPubMedWeb of Science®Google Scholar Grant , J.T. , McDermott , W.P. , Venegas , J.M. et al. ( 2017 ). Boron and boron-containing catalysts for the oxidative dehydrogenation of propane . ChemCatChem 9 : 3623 – 3626 . https://doi.org/10.1002/cctc.201701140 . 10.1002/cctc.201701140 CASWeb of Science®Google Scholar Yan , B. , Li , W.-C. , and Lu , A.-H. ( 2019 ). Metal-free silicon boride catalyst for oxidative dehydrogenation of light alkanes to olefins with high selectivity and stability . J. Catal. 369 : 296 – 301 . https://doi.org/10.1016/j.jcat.2018.11.014 . 10.1016/j.jcat.2018.11.014 CASWeb of Science®Google Scholar Sheng , J. , Yan , B. , Lu , W.-D. et al. ( 2021 ). Oxidative dehydrogenation of light alkanes to olefins on metal-free catalysts . Chem. Soc. Rev. 50 : 1438 – 1468 . https://doi.org/10.1039/D0CS01459A . 10.1039/D0CS01174F CASPubMedWeb of Science®Google Scholar Love , A.M. , Thomas , B. , Specht , S.E. et al. ( 2019 ). Probing the transformation of boron nitride catalysts under oxidative dehydrogenation conditions . J. Am. Chem. Soc. 141 : 182 – 190 . https://doi.org/10.1021/jacs.8b08165 . 10.1021/jacs.8b08165 CASPubMedWeb of Science®Google Scholar Altvater , A.R. , Dorn , R.W. , Cendejas , M.C. et al. ( 2020 ). B-MWW zeolite: the case against single-site catalysis . Angew. Chem. Int. Ed. 59 : 6546 – 6550 . https://doi.org/10.1002/anie.201914696 . 10.1002/anie.201914696 CASPubMedWeb of Science®Google Scholar Venegas , J.M. , McDermott , W.P. , and Hermans , I. ( 2018 ). Serendipity in catalysis research: boron-based materials for alkane oxidative dehydrogenation . Acc. Chem. Res. 51 : 2556 – 2564 . https://doi.org/10.1021/acs.accounts.8b00330 . 10.1021/acs.accounts.8b00330 CASPubMedWeb of Science®Google Scholar Zhou , H. , Yi , X. , Hui , Y. et al. ( 2021 ). Isolated boron in zeolite for oxidative dehydrogenation of propane . Science 372 : 76 – 80 . https://doi.org/10.1126/science.abe7935 . 10.1126/science.abe7935 CASPubMedWeb of Science®Google Scholar Dai , Y. , Gao , X. , Wang , Q. et al. ( 2021 ). Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane . Chem. Soc. Rev. 50 : 5590 – 5630 . https://doi.org/10.1039/D0CS01260B . 10.1039/D0CS01260B CASPubMedWeb of Science®Google Scholar Yang , Y. , Li , H. , Zhou , H. et al. ( 2020 ). Coking-resistant iron catalyst in ethane dehydrogenation achieved through siliceous zeolite modulation . J. Am. Chem. Soc. 142 : 16429 – 16436 . https://doi.org/10.1021/jacs.0c07792 . 10.1021/jacs.0c07792 CASPubMedWeb of Science®Google Scholar Liu , L. , Li , H. , Zhou , H. et al. ( 2022 ). Rivet of cobalt in siliceous zeolite for catalytic ethane dehydrogenation . Chem https://doi.org/10.1016/j.chempr.2022.10.026 . 10.1016/j.chempr.2022.10.026 Google Scholar Maeno , Z. , Yasumura , S. , Wu , X. et al. ( 2020 ). Isolated indium hydrides in CHA zeolites: speciation and catalysis for nonoxidative dehydrogenation of ethane . J. Am. Chem. Soc. 142 : 4820 – 4832 . https://doi.org/10.1021/jacs.9b13865 . 10.1021/jacs.9b13865 CASPubMedWeb of Science®Google Scholar Wang , C. , Han , Y. , Tian , M. et al. ( 2022 ). Main-group catalysts with atomically dispersed in sites for highly efficient oxidative dehydrogenation . J. Am. Chem. Soc. 144 : 16855 – 16865 . https://doi.org/10.1021/jacs.2c04926 . 10.1021/jacs.2c04926 CASPubMedWeb of Science®Google Scholar Gesser , H.D. , Hunter , N.R. , and Prakash , C.B. ( 1985 ). The direct conversion of methane to methanol by controlled oxidation . Chem. Rev. 85 : 235 – 244 . https://doi.org/10.1021/cr00068a001 . 10.1021/cr00068a001 CASWeb of Science®Google Scholar Hickman , D.A. and Schmidt , L.D. ( 1993 ). Production of syngas by direct catalytic oxidation of methane . Science 259 : 343 – 346 . https://doi.org/10.1126/science.259.5093.3 . 10.1126/science.259.5093.343 CASPubMedWeb of Science®Google Scholar Maier , L. , Schädel , B. , Delgado , K.H. et al. ( 2011 ). Steam reforming of methane over nickel: development of a multi-step surface reaction mechanism . Top. Catal. 54 : 845 . https://doi.org/10.1007/s11244-011-9702-1 . 10.1007/s11244-011-9702-1 CASWeb of Science®Google Scholar Stiles , A.B. , Chen , F. , Harrison , J.B. et al. ( 1991 ). Catalytic conversion of synthesis gas to methanol and other oxygenated products . Ind. Eng. Chem. Res. 30 : 811 – 821 . https://doi.org/10.1021/ie00053a002 . 10.1021/ie00053a002 CASWeb of Science®Google Scholar Gotti , A. and Prins , R. ( 1998 ). Basic metal oxides as cocatalysts for Cu/SiO 2 catalysts in the conversion of synthesis gas to methanol . J. Catal. 178 : 511 – 519 . https://doi.org/10.1006/jcat.1998.2167 . 10.1006/jcat.1998.2167 CASWeb of Science®Google Scholar Liu , H.F. , Liu , R.S. , Liew , K.Y. et al. ( 1984 ). Partial oxidation of methane by nitrous oxide over molybdenum on silica . J. Am. Chem. Soc. 106 : 4117 – 4121 . https://doi.org/10.1021/ja00327a009 . 10.1021/ja00327a009 CASWeb of Science®Google Scholar Herman , R.G. , Sun , Q. , Shi , C. et al. ( 1997 ). Development of active oxide catalysts for the direct oxidation of methane to formaldehyde . Catal. Today 37 : 1 – 14 . https://doi.org/10.1016/S0920-5861(96)00256-8 . 10.1016/S0920-5861(96)00256-8 CASWeb of Science®Google Scholar Parmaliana , A. , Arena , F. , Frusteri , F. , and Mezzapica , A. ( 1998 ). High yields in the catalytic partial oxidation of natural gas to formaldehyde: catalyst development and reactor configuration . Stud. Surf. Sci. Catal. 119 : 551 – 556 . https://doi.org/10.1016/S0167-2991(98)80489-8 . 10.1016/S0167-2991(98)80489-8 CASGoogle Scholar Lou , Y. , Wang , H. , Zhang , Q. , and Wang , Y. ( 2007 ). SBA-15-supported molybdenum oxides as efficient catalysts for selective oxidation of ethane to formaldehyde and acetaldehyde by oxygen . J. Catal. 247 : 245 – 255 . https://doi.org/10.1016/j.jcat.2007.02.011 . 10.1016/j.jcat.2007.02.011 CASWeb of Science®Google Scholar Wang , Y. , Yang , W. , Yang , L. et al. ( 2006 ). Iron-containing heterogeneous catalysts for partial oxidation of methane and epoxidation of propylene . Catal. Today 117 : 156 – 162 . https://doi.org/10.1016/j.cattod.2006.05.018 . 10.1016/j.cattod.2006.05.018 CASWeb of Science®Google Scholar Zhang , Q. , Li , Y. , An , D. , and Wang , Y. ( 2009 ). Catalytic behavior and kinetic features of FeO x /SBA-15 catalyst for selective oxidation of methane by oxygen . Appl. Catal. A Gen. 356 : 103 – 111 . https://doi.org/10.1016/j.apcata.2008.12.031 . 10.1016/j.apcata.2008.12.031 CASWeb of Science®Google Scholar Periana , R.A. , Taube , D.J. , Evitt , E.R. et al. ( 1993 ). A mercury-catalyzed, high-yield system for the oxidation of methane to methanol . Science 259 : 340 – 343 . https://doi.org/10.1126/science.259.5093.340 . 10.1126/science.259.5093.340 CASPubMedWeb of Science®Google Scholar Periana , R.A. , Taube , D.J. , Gamble , S. et al. ( 1998 ). Platinum catalysts for the high-yield oxidation of methane to a methanol derivative . Science 280 : 560 – 564 . https://doi.org/10.1126/science.280.5363.560 . 10.1126/science.280.5363.560 CASPubMedWeb of Science®Google Scholar Groothaert , M.H. , Smeets , P.J. , Sels , B.F. et al. ( 2005 ). Selective oxidation of methane by the bis (μ-oxo) dicopper core stabilized on ZSM-5 and mordenite zeolites . J. Am. Chem. Soc. 127 : 1394 – 1395 . https://doi.org/10.1021/ja047158u . 10.1021/ja047158u CASPubMedWeb of Science®Google Scholar Banerjee , R. , Proshlyakov , Y. , Lipscomb , J.D. , and Proshlyako , D.A. ( 2015 ). Structure of the key species in the enzymatic oxidation of methane to methanol . Nature 518 : 431 – 434 . https://doi.org/10.1038/nature14160 . 10.1038/nature14160 CASPubMedWeb of Science®Google Scholar Alayon , E.M. , Nachtegaal , M. , Ranocchiari , M. , and Van Bokhoven , J.A. ( 2012 ). Catalytic conversion of methane to methanol over Cu–mordenite . Chem. Commun. 48 : 404 – 406 . https://doi.org/10.1039/C1CC15840F . 10.1039/C1CC15840F CASPubMedWeb of Science®Google Scholar Sushkevich , V.L. , Palagin , D. , Ranocchiari , M. , and van Bokhoven , J.A. ( 2017 ). Selective anaerobic oxidation of methane enables direct synthesis of methanol . Science 356 : 523 – 527 . https://doi.org/10.1126/science.aam9035 . 10.1126/science.aam9035 CASPubMedWeb of Science®Google Scholar Imbao , J. , van Bokhoven , J.A. , and Nachtegaal , M. ( 2021 ). On the promotional and inhibitory effects of water on Wacker-type ethylene oxidation over Pd–Cu/Zeolite Y . ACS Catal. 11 : 8684 – 8691 . https://doi.org/10.1021/acscatal.1c00507 . 10.1021/acscatal.1c00507 CASWeb of Science®Google Scholar Imbao , J. , van Bokhoven , J.A. , Clark , A. , and Nachtegaal , M. ( 2020 ). Elucidating the mechanism of heterogeneous Wacker oxidation over Pd-Cu/zeolite Y by transient XAS . Nat. Commun. 11 : 1118 . https://doi.org/10.1038/s41467-020-14982-x . 10.1038/s41467-020-14982-x PubMedWeb of Science®Google Scholar Huang , W. , Zhang , S. , Tang , Y. et al. ( 2016 ). Low-temperature transformation of methane to methanol on Pd1O4 single sites anchored on the internal surface of microporous silicate . Angew. Chem. Int. Ed. 55 : 13441 – 13445 . https://doi.org/10.1002/ange.201604708 . 10.1002/anie.201604708 CASPubMedWeb of Science®Google Scholar Min , J.S. , Ishige , H. , Misono , M. , and Mizuno , N. ( 2001 ). Low-temperature selective oxidation of methane into formic acid with H 2 –O 2 gas mixture catalyzed by bifunctional catalyst of palladium–heteropoly compound . J. Catal. 198 : 116 – 121 . https://doi.org/10.1006/jcat.2000.3117 . 10.1006/jcat.2000.3117 CASWeb of Science®Google Scholar Freakley , S.J. , He , Q. , Harrhy , J.H. et al. ( 2016 ). Palladium-tin catalysts for the direct synthesis of H 2 O 2 with high selectivity . Science 351 : 965 – 968 . https://doi.org/10.1126/science.aad5705 . 10.1126/science.aad5705 CASPubMedWeb of Science®Google Scholar Rahim , M.H.A. , Forde , M.M. , Jenkins , R.L. et al. ( 2013 ). Oxidation of methane to methanol with hydrogen peroxide using supported gold–palladium alloy nanoparticles . Angew. Chem. Int. Ed. 52 : 1280 – 1284 . https://doi.org/10.1002/anie.201207717 . 10.1002/anie.201207717 PubMedWeb of Science®Google Scholar Jin , Z. , Wang , L. , Zuidema , E. et al. ( 2020 ). Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol . Science 367 : 193 – 197 . https://doi.org/10.1126/science.aaw1108 . 10.1126/science.aaw1108 CASPubMedWeb of Science®Google Scholar Shan , J. , Li , M. , Allard , L.F. et al. ( 2017 ). Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts . Nature 551 : 605 – 608 . https://doi.org/10.1038/nature24640 . 10.1038/nature24640 CASPubMedWeb of Science®Google Scholar Tang , Y. , Li , Y. , and Tao , F. ( 2022 ). Activation and catalytic transformation of methane under mild conditions . Chem. Soc. Rev. 51 : 376 – 423 . https://doi.org/10.1039/D1CS00783A . 10.1039/D1CS00783A CASPubMedWeb of Science®Google Scholar Boetius , A. , Ravenschlag , K. , Schubert , C.J. et al. ( 2000 ). A marine microbial consortium apparently mediating anaerobic oxidation of methane . Nature 407 : 623 – 626 . https://doi.org/10.1038/35036572 . 10.1038/35036572 CASPubMedWeb of Science®Google Scholar Qi , G. , Davies , T.E. , Nasrallah , A. et al. ( 2022 ). Au-ZSM-5 catalyses the selective oxidation of CH 4 to CH 3 OH and CH 3 COOH using O 2 . Nat. Catal. 5 : 45 – 54 . https://doi.org/10.17035/d.2021.0142278187 . 10.1038/s41929-021-00725-8 CASWeb of Science®Google Scholar Yan , H. , Alayoglu , S. , Wu , W. et al. ( 2021 ). Identifying boron active sites for the oxidative dehydrogenation of propane . ACS Catal. 11 : 9370 – 9376 . https://doi.org/10.1021/acscatal.1c02168 . 10.1021/acscatal.1c02168 CASWeb of Science®Google Scholar Micro‐Mesoporous Metallosilicates: Synthesis, Characterization, and Catalytic Applications ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Java完成签到,获得积分10
刚刚
哈哈哈哈完成签到 ,获得积分10
1秒前
黄豆完成签到 ,获得积分10
5秒前
简单幸福完成签到 ,获得积分10
20秒前
一个没自信的boy完成签到 ,获得积分10
26秒前
wang完成签到,获得积分10
27秒前
白冬智完成签到 ,获得积分10
28秒前
SCI的芷蝶完成签到 ,获得积分10
40秒前
jasmine完成签到 ,获得积分10
43秒前
flj7038完成签到,获得积分10
1分钟前
毕春宇完成签到 ,获得积分10
1分钟前
段誉完成签到 ,获得积分10
1分钟前
和谐的夏岚完成签到 ,获得积分10
1分钟前
张丫丫完成签到,获得积分10
1分钟前
房天川完成签到 ,获得积分0
1分钟前
张楠完成签到 ,获得积分10
1分钟前
雪妮完成签到 ,获得积分10
2分钟前
ding应助Juta采纳,获得10
2分钟前
chichenglin完成签到 ,获得积分10
2分钟前
丹妮完成签到 ,获得积分10
2分钟前
精壮小伙完成签到,获得积分0
2分钟前
诗蕊完成签到 ,获得积分0
2分钟前
呆呆的猕猴桃完成签到 ,获得积分10
2分钟前
CodeCraft应助科研民工李采纳,获得10
3分钟前
3分钟前
城外青山完成签到,获得积分10
3分钟前
福尔摩曦完成签到,获得积分10
3分钟前
3分钟前
祖之微笑发布了新的文献求助10
3分钟前
3分钟前
科研民工李完成签到,获得积分10
3分钟前
寒战完成签到 ,获得积分10
3分钟前
3分钟前
Lili发布了新的文献求助10
3分钟前
eular完成签到 ,获得积分10
3分钟前
lemon完成签到,获得积分10
3分钟前
平日裤子发布了新的文献求助10
4分钟前
Lili完成签到,获得积分0
4分钟前
贝贝完成签到,获得积分0
4分钟前
GRATE完成签到 ,获得积分10
4分钟前
高分求助中
Exploring Mitochondrial Autophagy Dysregulation in Osteosarcoma: Its Implications for Prognosis and Targeted Therapy 4000
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
Evolution 1100
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Research Methods for Sports Studies 1000
Gerard de Lairesse : an artist between stage and studio 670
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 免疫学 病理 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2980288
求助须知:如何正确求助?哪些是违规求助? 2641361
关于积分的说明 7124827
捐赠科研通 2274285
什么是DOI,文献DOI怎么找? 1206476
版权声明 592005
科研通“疑难数据库(出版商)”最低求助积分说明 589477