Prediction of Pancreatic Cancer Risk in Patients with New-onset Diabetes Using a Machine Learning Approach Based on Routine Biochemical Parameters

医学 接收机工作特性 胰腺癌 人口 糖尿病 点头 内科学 癌症 肿瘤科 机器学习 判别式 人工智能 内分泌学 计算机科学 环境卫生
作者
Simon Lebech Cichosz,Morten Hasselstrøm Jensen,Ole Hejlesen,Stine Dam Henriksen,Asbjørn Mohr Drewes,Søren Schou Olesen
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:244: 107965-107965
标识
DOI:10.1016/j.cmpb.2023.107965
摘要

To develop a machine-learning model that can predict the risk of pancreatic ductal adenocarcinoma (PDAC) in people with new-onset diabetes (NOD). From a population-based sample of individuals with NOD aged >50 years, patients with pancreatic cancer-related diabetes (PCRD), defined as NOD followed by a PDAC diagnosis within 3 years, were included (n=716). These PCRD patients were randomly matched in a 1:1 ratio with individuals having NOD. Data from Danish national health registries were used to develop a random forest model to distinguish PCRD from Type 2 diabetes. The model was based on age, gender, and parameters derived from feature engineering on trajectories of routine biochemical variables. Model performance was evaluated using receiver operating characteristic curves (ROC) and relative risk scores. The most discriminative model included 20 features and achieved a ROC-AUC of 0.78 (CI:0.75-0.83). Compared to the general NOD population, the relative risk for PCRD was 20-fold increase for the 1% of patients predicted by the model to have the highest cancer risk (3-year cancer risk of 12% and sensitivity of 20%). Age was the most discriminative single feature, followed by the rate of change in haemoglobin A1c and the latest plasma triglyceride level. When the prediction model was restricted to patients with PDAC diagnosed six months after diabetes diagnosis, the ROC-AUC was 0.74 (CI:0.69-0.79). In a population-based setting, a machine-learning model utilising information on age, sex and trajectories of routine biochemical variables demonstrated good discriminative ability between PCRD and Type 2 diabetes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhh发布了新的文献求助10
刚刚
超级灵竹完成签到,获得积分10
刚刚
打打应助acc采纳,获得10
1秒前
任无血完成签到,获得积分10
1秒前
大个应助tt喜欢yas采纳,获得10
3秒前
4秒前
善学以致用应助qtzkk采纳,获得10
5秒前
5秒前
科研通AI5应助LPhy_Z采纳,获得10
5秒前
手可摘星辰完成签到 ,获得积分10
6秒前
马麻薯完成签到,获得积分10
6秒前
JIA发布了新的文献求助10
8秒前
小黄鱼儿应助fino采纳,获得10
8秒前
科研通AI2S应助fino采纳,获得10
8秒前
8秒前
8秒前
淡淡猕猴桃应助小晴采纳,获得10
9秒前
顾矜应助一只鱼采纳,获得10
9秒前
acc发布了新的文献求助10
9秒前
还单身的秋玲关注了科研通微信公众号
10秒前
11秒前
12秒前
chrainy发布了新的文献求助10
13秒前
CodeCraft应助眼睛大的问儿采纳,获得10
13秒前
14秒前
14秒前
15秒前
深情的平灵完成签到,获得积分20
15秒前
LIN发布了新的文献求助10
16秒前
18秒前
18秒前
19秒前
追寻奄发布了新的文献求助10
20秒前
霓娜酱发布了新的文献求助10
20秒前
21秒前
一只鱼发布了新的文献求助10
22秒前
gulyar发布了新的文献求助30
22秒前
23秒前
所所应助不安的凝阳采纳,获得10
25秒前
wxj完成签到,获得积分20
25秒前
高分求助中
Drug Prescribing in Renal Failure: Dosing Guidelines for Adults and Children 5th Edition 2000
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 500
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3712069
求助须知:如何正确求助?哪些是违规求助? 3260287
关于积分的说明 9913349
捐赠科研通 2973619
什么是DOI,文献DOI怎么找? 1630714
邀请新用户注册赠送积分活动 773553
科研通“疑难数据库(出版商)”最低求助积分说明 744295