Advances of designing effective and functional electrolyte system for high-stability aqueous Zn ion battery

电解质 材料科学 阴极 电池(电) 阳极 水溶液 溶解 离子 化学工程 纳米技术 工艺工程 工程类 化学 电气工程 热力学 电极 有机化学 物理化学 功率(物理) 物理
作者
Lanlan Fan,Xinkuan Hu,Yimei Jiao,Lei Cao,Shixian Xiong,Feng Gu,Shufen Wang
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:479: 147763-147763 被引量:8
标识
DOI:10.1016/j.cej.2023.147763
摘要

Aqueous Zn ions battery (ZIBs) is regarded as the most promising alternative energy storage system, which is powered by the aqueous electrolyte. However, uncontrolled water interactions often generate a series of thorny problems to jeopardize the cycle stability of the ZIBs, such as the dissolution of cathode material, the occurrence of hydrogen evolution reaction, and uncontrollable growth of dendrites in the Zn anode. Compared with a great deal of effort on the cathode materials for ZIBs, inadequate attention is received concerning the design of electrolytes aimed at addressing the above-mentioned problems. Although there are review articles about Zn ion electrolytes, a review of electrolyte design strategies for highly stable ZIBs and the key problems they can address is still lacking. Therefore, in this review, the comprehensive introduction to the strategies based on electrolyte engineering is elaborated, containing the type of Zn salt, the concentration of salt, the choice of functional additives, and the design of gel electrolyte and solid electrolyte. In fact, the hydration of Zn2+ ions is one of the main causing of undesired side reactions. And this review also provides an in-depth and fundamental understanding of the effects, mechanisms and strategies of electrolyte modification on Zn2+ solvation shells, which can provide guidelines for the accurate evaluation and analysis of ZIBs in the future. Moreover, several designed strategies for electrolytes are proposed in this review for the further exploration of high performance aqueous rechargeable ZIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
瘦瘦茗茗完成签到,获得积分10
2秒前
wang关注了科研通微信公众号
2秒前
3秒前
不配.应助728采纳,获得10
3秒前
小吕发布了新的文献求助10
5秒前
polar完成签到,获得积分10
6秒前
6秒前
格瑞格完成签到,获得积分10
7秒前
123发布了新的文献求助30
7秒前
8秒前
无花果应助Shine采纳,获得10
9秒前
不配.应助Natua采纳,获得20
10秒前
rosalieshi应助虚拟的羽毛采纳,获得30
10秒前
白鸽应助stop here采纳,获得10
10秒前
77完成签到 ,获得积分10
11秒前
圆彰七大发布了新的文献求助10
12秒前
koi发布了新的文献求助10
12秒前
依依发布了新的文献求助10
13秒前
14秒前
风茠住发布了新的文献求助10
14秒前
unique应助雪白的迎波采纳,获得10
14秒前
14秒前
雷雷雷完成签到 ,获得积分10
15秒前
16秒前
Helic发布了新的文献求助30
17秒前
思源应助酷酷的芒果采纳,获得10
18秒前
Caspase关注了科研通微信公众号
18秒前
20秒前
jj发布了新的文献求助20
22秒前
22秒前
23秒前
不配.应助輝23采纳,获得20
23秒前
陆陆大人完成签到,获得积分10
23秒前
毛毛发布了新的文献求助10
23秒前
23秒前
yyyalles发布了新的文献求助10
24秒前
玉米完成签到,获得积分10
24秒前
大模型应助zxvcbnm采纳,获得10
24秒前
烟花应助xiu_ye采纳,获得10
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135235
求助须知:如何正确求助?哪些是违规求助? 2786181
关于积分的说明 7776022
捐赠科研通 2442078
什么是DOI,文献DOI怎么找? 1298417
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600847