Exploring Bus Stop Mobility Pattern: A Multi-Pattern Deep Learning Prediction Framework

计算机科学 数据挖掘 依赖关系(UML) 聚类分析 人工智能 机器学习 图形 构造(python库) 流量(计算机网络) 计算机网络 理论计算机科学
作者
Xiangjie Kong,Zhehui Shen,Kailai Wang,Guojiang Shen,Yanjie Fu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:8
标识
DOI:10.1109/tits.2023.3345872
摘要

The spatio-temporal prediction task in the transportation network is the core of the solutions for various traffic problems. On one hand, the mobility pattern in traffic can be reflected in the travel behavior of the crowd. In most traffic prediction tasks, the importance of the mobility pattern is often overlooked. On the other hand, traffic prediction also has a variety of predicting scenarios, including short-term and long-term prediction, and relevant research cannot solve the problems under the two scenarios at the same time. In view of the problem of existing work, we propose a multi-pattern traffic prediction framework, MPGNNFormer. First, we construct a new bus stop distance network to model the relationships between stops. Then, we use a graph neural network-based deep clustering method to extract the bus stop mobility pattern. Finally, we design a transformer-based spatio-temporal prediction model (STGNNFormer) to predict bus stop flow by taking full advantage of time dependency and space dependency. After that, we conduct a series of experiments to evaluate and test them on the real bus dataset, including analyzing mobility patterns and comparing prediction results. The experimental results prove that MPGNNFormer can improve the calculation efficiency in the prediction scene while ensuring prediction accuracy in the stop-flow prediction of the transportation network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
www完成签到,获得积分10
刚刚
我是老大应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得30
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
科研通AI2S应助eiddn采纳,获得10
1秒前
不配.应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
盒子应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
Ava应助GK采纳,获得10
1秒前
1秒前
汉堡包应助科研通管家采纳,获得30
1秒前
wanci应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
华仔应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
GeniusC发布了新的文献求助200
1秒前
Xenia应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
盒子应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
暮霭沉沉应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
2秒前
Triumph完成签到,获得积分10
3秒前
3秒前
汉堡包应助蜜蜜采纳,获得30
3秒前
3秒前
尉迟怜翠完成签到,获得积分10
3秒前
Cody发布了新的文献求助10
4秒前
Anna完成签到,获得积分10
4秒前
Hello应助zhangling采纳,获得10
5秒前
5秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160609
求助须知:如何正确求助?哪些是违规求助? 2811828
关于积分的说明 7893452
捐赠科研通 2470647
什么是DOI,文献DOI怎么找? 1315718
科研通“疑难数据库(出版商)”最低求助积分说明 630929
版权声明 602052