Computational Flow Cytometry Accurately Identifies Sezary Cells Based on Simplified Aberrancy and Clonality Features

蕈样真菌病 免疫分型 外周T细胞淋巴瘤 皮肤T细胞淋巴瘤 病理 流式细胞术 CD3型 接收机工作特性 医学 T细胞 CD8型 淋巴瘤 免疫学 抗原 内科学 免疫系统
作者
Jansen N. Seheult,Matthew J. Weybright,Dragan Jevremović,Min Shi,Horatiu Olteanu,Pedro Horna
出处
期刊:Journal of Investigative Dermatology [Elsevier]
卷期号:144 (7): 1590-1599.e3
标识
DOI:10.1016/j.jid.2023.12.020
摘要

Flow cytometric identification of circulating neoplastic cells (Sezary cells) in patients with mycosis fungoides (MF) and Sezary syndrome (SS) is essential for diagnosis, staging and prognosis. While recent advances have improved the performance of this laboratory assay, the complex immunophenotype of Sezary cells and overlap with reactive T cells demand a high level of analytic expertise. We utilized machine learning to simplify this analysis using only 2 pre-defined Sezary cell-gating plots. We studied 114 samples from 59 patients with SS/MF, and 66 samples from unique patients with inflammatory dermatoses. A single dimensionality reduction plot highlighted all T-cell receptor constant β chain-restricted (clonal) CD3+/CD4+ T-cells detected by expert analysis. On receiver operator curve analysis, an aberrancy scale feature computed by comparison with controls (area under the curve = 0.98) outperformed loss of CD2 (0.76), CD3 (0.83), CD7 (0.77) and CD26 (0.82) in discriminating Sezary cells from reactive CD4+ T cells. Our results closely mirrored those obtained by exhaustive expert analysis for event classification (positive percent agreement = 100%, negative percent agreement = 99%) and Sezary cell quantitation (regression slope = 1.003, R squared = 0.9996). We demonstrate the potential of machine learning to simplify the accurate identification of Sezary cells.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
畅快平蓝完成签到,获得积分10
刚刚
大棒槌发布了新的文献求助10
1秒前
1秒前
Ann完成签到,获得积分10
1秒前
今今发布了新的文献求助10
2秒前
123123完成签到 ,获得积分10
2秒前
SciGPT应助伊酒采纳,获得10
3秒前
何糖发布了新的文献求助10
4秒前
ding应助SEV采纳,获得10
4秒前
田様应助csq采纳,获得10
4秒前
dafwfwaf发布了新的文献求助10
4秒前
4秒前
景别完成签到,获得积分10
5秒前
彭于晏应助zhappy采纳,获得20
5秒前
6秒前
xg发布了新的文献求助10
6秒前
7秒前
Tophet完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
FashionBoy应助落落采纳,获得10
9秒前
活力的青枫完成签到 ,获得积分10
9秒前
苏素肃发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
空禅yew发布了新的文献求助10
11秒前
汉堡包应助花开的声音1217采纳,获得10
11秒前
ying发布了新的文献求助10
11秒前
animenz完成签到,获得积分10
12秒前
tY发布了新的文献求助10
13秒前
OJL发布了新的文献求助10
13秒前
13秒前
13秒前
柒柒完成签到,获得积分10
13秒前
丘比特应助111采纳,获得10
14秒前
15秒前
15秒前
XShu完成签到,获得积分20
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808