DIML: Deep Interpretable Metric Learning via Structural Matching

人工智能 计算机科学 可解释性 杠杆(统计) 公制(单位) 深度学习 匹配(统计) 相似性(几何) 机器学习 模式识别(心理学) 图像(数学) 数学 运营管理 统计 经济
作者
Wenliang Zhao,Yongming Rao,Jie Zhou,Jiwen Lu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (4): 2518-2532 被引量:1
标识
DOI:10.1109/tpami.2023.3336668
摘要

In this paper, we present a new framework named DIML to achieve more interpretable deep metric learning. Unlike traditional deep metric learning method that simply produces a global similarity given two images, DIML computes the overall similarity through the weighted sum of multiple local part-wise similarities, making it easier for human to understand the mechanism of how the model distinguish two images. Specifically, we propose a structural matching strategy that explicitly aligns the spatial embeddings by computing an optimal matching flow between feature maps of the two images. We also devise a multi-scale matching strategy, which considers both global and local similarities and can significantly reduce the computational costs in the application of image retrieval. To handle the view variance in some complicated scenarios, we propose to use cross-correlation as the marginal distribution of the optimal transport to leverage semantic information to locate the important region in the images. Our framework is model-agnostic, which can be applied to off-the-shelf backbone networks and metric learning methods. To extend our DIML to more advanced architectures like vision Transformers (ViTs), we further propose truncated attention rollout and partial similarity to overcome the lack of locality in ViTs. We evaluate our method on three major benchmarks of deep metric learning including CUB200-2011, Cars196, and Stanford Online Products, and achieve substantial improvements over popular metric learning methods with better interpretability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤奋的刺猬完成签到,获得积分10
刚刚
xiaoqianqian174完成签到,获得积分10
1秒前
包凡之发布了新的文献求助10
1秒前
2秒前
d董完成签到,获得积分10
3秒前
4秒前
Orange应助luoluo采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
JamesYang发布了新的文献求助10
6秒前
欧哈纳发布了新的文献求助10
6秒前
orixero应助diplomat采纳,获得10
7秒前
7秒前
希望天下0贩的0应助南北采纳,获得10
8秒前
10秒前
Ellalala发布了新的文献求助10
10秒前
汉堡包应助sunhealth采纳,获得10
11秒前
JamesPei应助JamesYang采纳,获得10
12秒前
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
12秒前
orixero应助科研通管家采纳,获得10
12秒前
CipherSage应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
烟花应助科研通管家采纳,获得30
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
我是老大应助liuhang采纳,获得50
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
可靠小懒虫完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729141
求助须知:如何正确求助?哪些是违规求助? 5316369
关于积分的说明 15315857
捐赠科研通 4876150
什么是DOI,文献DOI怎么找? 2619263
邀请新用户注册赠送积分活动 1568820
关于科研通互助平台的介绍 1525317