Validity Arguments for Automated Essay Scoring of Young Students’ Writing Traits

写作评估 一致性(知识库) 背景(考古学) 词汇 心理学 推论 论证(复杂分析) 形成性评价 特质 人工智能 自然语言处理 计算机科学 数学教育 语言学 化学 程序设计语言 古生物学 哲学 生物 生物化学
作者
L. Hannah,Eunice Eunhee Jang,Maitree Shah,Vaibhav Gupta
出处
期刊:Language Assessment Quarterly [Informa]
卷期号:20 (4-5): 399-420 被引量:3
标识
DOI:10.1080/15434303.2023.2288253
摘要

ABSTRACTMachines have a long-demonstrated ability to find statistical relationships between qualities of texts and surface-level linguistic indicators of writing. More recently, unlocked by artificial intelligence, the potential of using machines to identify content-related writing trait criteria has been uncovered. This development is significant, especially in formative assessment contexts where feedback is key. Yet the extent to which writing traits can be validly scored by machines remains under-researched, especially in the K-12 context. The present study investigated the validity of machine learning (ML) models designed for students in grades 3–6 to score three writing traits: task fulfillment, organization and coherence, and vocabulary and expression. The study utilized an argument-based approach, focusing on two primary inferences: evaluation and explanation. The evaluation inference investigated human-machine score alignment, the ability for the models to detect off-topic and gibberish responses, and the consistency of human-machine score alignment across grades and language backgrounds. The explanation inference investigated the relevance of features used in the models. Results indicated that human-machine score alignment was sufficient for all writing traits; however, validity concerns were raised regarding the models' performances detecting off-topic and gibberish responses and the consistency across sub-groups. Implications for language assessment professionals and other educators were discussed. Disclosure statementNo potential conflict of interest was reported by the author(s).EthicsThis research was approved by the social sciences, humanities, and education research ethics board of the University of Toronto, reference number 34,203.Additional informationFundingThe work was supported by the Social Sciences and Humanities Research Council of Canada [486987].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vic完成签到,获得积分10
4秒前
yidashi完成签到,获得积分10
5秒前
Hello应助tigerli采纳,获得10
6秒前
6秒前
8秒前
Pytong完成签到,获得积分10
8秒前
Lucas应助郭志强采纳,获得10
8秒前
delta完成签到,获得积分10
9秒前
Ldq发布了新的文献求助10
11秒前
万能图书馆应助wqy采纳,获得10
11秒前
天行发布了新的文献求助10
12秒前
14秒前
要减肥的凡旋完成签到 ,获得积分10
14秒前
Jasper应助布洛芬采纳,获得10
16秒前
Adeline完成签到,获得积分10
19秒前
氯雷他定完成签到 ,获得积分10
19秒前
ABC发布了新的文献求助10
20秒前
光亮秋天完成签到 ,获得积分10
21秒前
Ldq完成签到,获得积分10
22秒前
布洛芬完成签到,获得积分20
22秒前
在水一方应助ug采纳,获得10
23秒前
23秒前
lemon完成签到,获得积分10
24秒前
善学以致用应助ghost采纳,获得10
26秒前
26秒前
布洛芬发布了新的文献求助10
28秒前
Hello应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
丘比特应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
深情的鞯完成签到,获得积分10
30秒前
31秒前
31秒前
悟空发布了新的文献求助10
32秒前
37秒前
顾矜应助janie采纳,获得10
38秒前
天天快乐应助wenyi采纳,获得10
39秒前
震动的听枫完成签到,获得积分10
41秒前
44秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137539
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7787114
捐赠科研通 2444837
什么是DOI,文献DOI怎么找? 1300071
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023