Psychological capital among clinical nurses: A latent profile analysis

潜在类模型 首都(建筑) 心理学 护理部 医学 计算机科学 地理 机器学习 考古
作者
Mei Teng,Jialin Wang,Man Jin,Zhongqing Yuan,Hong He,Shuping Wang,Ren Qianqian
出处
期刊:International Nursing Review [Wiley]
被引量:6
标识
DOI:10.1111/inr.12918
摘要

To determine the psychological capital level of nurses and explore the latent profiles of nurses regarding their psychological capital scores.The use of individual-centered analysis for the connotation of nurses' psychological capital structure is less studied and still needs to be further explored.By the convenience sampling method, 494 clinical nurses from 7 general hospitals in Sichuan province were selected. The study was conducted from December 2022 to February 2023. Latent profile analysis was used for data analysis. We followed STROBE guidelines in this research.The total mean score of nurses' psychological capital is 5.17 (SD = 0.8). The following four latent profiles were identified: "poor" (4.5%), "medium" (22.9%), "well-off" (41.5%), and "rich" (31.1%). Multiple logistic regression showed that the number of hours worked per day and the number of night shifts per month were negative predictors of psychological capital, and psychological training and job satisfaction were protective factors of psychological capital.Our study found that the four profiles can be distinguished by "poor," "well-off," "medium," and "rich" levels of psychological capital. Among them, more than 70% of the nurses belonged to the well-off and rich profiles, and the number of the poor profile was the lowest.The overall psychological capital of clinical nurses is at a medium-high level. Each profile is influenced by multiple sociodemographic factors (i.e., age, working hours, monthly income, psychological training, and job satisfaction).Administrators should develop enhancement strategies to improve the mental health of nurses based on the characteristics of their psychological capital profiles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ysf完成签到,获得积分10
1秒前
lh完成签到 ,获得积分10
2秒前
小恶于完成签到 ,获得积分10
3秒前
111完成签到,获得积分20
4秒前
qzj发布了新的文献求助10
4秒前
子车茗应助曾经以亦采纳,获得30
4秒前
4秒前
科研通AI5应助ykkxxd采纳,获得10
5秒前
吉吉完成签到 ,获得积分10
6秒前
老板娘完成签到,获得积分10
6秒前
小何完成签到 ,获得积分10
7秒前
感动的听寒完成签到,获得积分10
8秒前
Jingg完成签到,获得积分10
8秒前
Hh发布了新的文献求助10
9秒前
还好完成签到,获得积分10
10秒前
思源应助科研通管家采纳,获得30
10秒前
cdercder应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
hjc完成签到,获得积分10
10秒前
cdercder应助科研通管家采纳,获得10
10秒前
10秒前
Hello应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
cdercder应助科研通管家采纳,获得10
11秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736892
求助须知:如何正确求助?哪些是违规求助? 3280817
关于积分的说明 10021089
捐赠科研通 2997457
什么是DOI,文献DOI怎么找? 1644633
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749703