Combined Maximal Overlap DWT and Adaptive Filtering for Denoising Seismic Signals

降噪 计算机科学 模式识别(心理学) 人工智能 语音识别
作者
T. Jayasree,Ni Luh Nyoman Seri Malini
出处
期刊:Iete Journal of Research [Informa]
卷期号:: 1-28
标识
DOI:10.1080/03772063.2023.2286611
摘要

In this paper, denoising of seismic signals based on Maximal Overlap Discrete Wavelet Transform and Adaptive Filtering (MODWT-AF) is discussed. In this method, first the seismic signals are converted into a set of coefficients called approximation and detailed coefficients by applying MODWT-based Multi Resolution Analysis (MODWT-MRA) technique. Then, adaptive filtering is applied to these coefficients, which removes noise present in the frequency sub bands of the signals. Finally, the denoised signal is reconstructed by performing the inverse MODWT to the modified set of coefficients. As a statistical analysis, the performance measures such as input signal-to-noise (SNRin), output signal-to-noise ratio (SNRout), SNR improvement (ΔSNR), Normalized Correction Coefficient (NCC), Mean Square Error (MSE), and RMS error are evaluated for different real earthquake records and synthetic seismic signals. The performance results of the proposed methodology are compared with other conventional thresholding methods such as MODWT-based thresholding (MODWT-TH) and Discrete Wavelet Transform based thresholding techniques namely Heursure (DWT-HE), Sqtwolog (DWT-SG), Minimaxi (DWT-MI), and Rigrsure (DWT-RE). The experimental results effectively demonstrated that the proposed methodology produced better outcomes compared to the conventional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助ZZZ采纳,获得10
刚刚
1秒前
顺心书琴完成签到,获得积分10
1秒前
习习应助Nifeng采纳,获得10
1秒前
mrmrer发布了新的文献求助10
1秒前
3秒前
MUSTer一一完成签到 ,获得积分10
3秒前
通通通完成签到,获得积分10
3秒前
3秒前
务实的菓完成签到 ,获得积分10
4秒前
似水流年完成签到,获得积分10
4秒前
An慧完成签到,获得积分10
4秒前
Hello应助阿金采纳,获得10
4秒前
4秒前
4秒前
6秒前
顾夏包完成签到,获得积分10
6秒前
小土豆发布了新的文献求助50
7秒前
科研通AI5应助跑在颖采纳,获得10
7秒前
追寻代真发布了新的文献求助10
8秒前
mrmrer完成签到,获得积分20
8秒前
8秒前
8秒前
毛慢慢发布了新的文献求助10
9秒前
9秒前
今天不学习明天变垃圾完成签到,获得积分10
9秒前
10秒前
10秒前
布布完成签到,获得积分10
11秒前
一独白发布了新的文献求助10
11秒前
周周完成签到 ,获得积分10
11秒前
淡然完成签到,获得积分10
12秒前
明理小土豆完成签到,获得积分10
12秒前
刘国建郭菱香完成签到,获得积分10
12秒前
嘤嘤嘤完成签到,获得积分10
12秒前
九川应助粱自中采纳,获得10
12秒前
无辜之卉完成签到,获得积分10
13秒前
无花果应助Island采纳,获得10
13秒前
13秒前
SHDeathlock发布了新的文献求助200
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762