Development of a coupled model of heat generation and jet flow of lithium-ion batteries during thermal runaway

热失控 核工程 燃烧 机械 喷射(流体) 热的 材料科学 燃烧室 热传导 发热 煤气燃烧器 传热 热力学 化学 物理 工程类 电池(电) 复合材料 功率(物理) 有机化学
作者
Rongchao Zhao,Zhaodan Lai,Weihua Li,Ming Ye,Shanhu Yu
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:63: 107048-107048 被引量:27
标识
DOI:10.1016/j.est.2023.107048
摘要

A large amount of heat will be generated during battery thermal runaway. However, the current models for the battery thermal runaway mainly consider the heat generated inside the battery cell and rarely consider the effects of the jet fire. Therefore, it cannot provide an effective way to evaluate the thermal runaway propagation in a battery pack. This study develops a coupled model considering the heat generation inside the battery and the jet fire outside the battery during thermal runaway, which can better evaluate the thermal hazard. Experimental and simulation activities are carried out based on 18,650 cylindrical NCM lithium-ion batteries. First, a test bench is built to trigger and record the thermal runaway. High-speed camera and thermocouples are applied to record the fire shape and temperature. Totally 15 cells with 100 % SOC are abused and six samples experienced intense combustion. The jet fires last for at least 20 s and the maximum combustion temperature was 1075.4 °C, at the location 80 mm above the cell. Then a coupled model consisting of 0D heat generation, gas generation and injection sub-models and 2D CFD sub-model is established based on ANSYS Fluent. The heat and gas generation rates inside the battery are calculated based on chemical reaction mechanisms. The flow, combustion and heat transfer in the open space are solved in a 2D axisymmetric domain. The proposed model can reasonably capture the main characteristic of the jet fire and temperature rise during thermal runaway. The maximum deviation of peak temperature between the experiment and simulation is 8.56 %.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助小畅采纳,获得10
刚刚
刚刚
香蕉觅云应助zyd采纳,获得10
刚刚
CodeCraft应助瑶瑶采纳,获得10
刚刚
肥猫发布了新的文献求助10
1秒前
球球发布了新的文献求助10
2秒前
水水水完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
森陌夏栀发布了新的文献求助10
2秒前
123应助雷涵晶采纳,获得10
3秒前
3秒前
Bai_shao完成签到,获得积分10
3秒前
4秒前
Daily发布了新的文献求助10
4秒前
阳佟水蓉完成签到,获得积分10
4秒前
4秒前
英姑应助鲜艳的手链采纳,获得10
5秒前
5秒前
5秒前
6秒前
欣欣完成签到 ,获得积分10
6秒前
香蕉觅云应助龚仕杰采纳,获得10
6秒前
淡淡芷天应助球球采纳,获得10
6秒前
Zhang完成签到,获得积分10
6秒前
邱雪辉完成签到,获得积分10
6秒前
7秒前
隐形曼青应助刘欣采纳,获得10
7秒前
newsl完成签到,获得积分10
7秒前
8秒前
8秒前
隐形曼青应助yy湫采纳,获得10
8秒前
shalom完成签到,获得积分10
8秒前
Hello应助yier采纳,获得10
9秒前
默默发布了新的文献求助10
9秒前
9秒前
浮浮世世发布了新的文献求助10
9秒前
10秒前
吕坏发布了新的文献求助10
10秒前
WZQ发布了新的文献求助10
10秒前
佳佳528发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5098708
求助须知:如何正确求助?哪些是违规求助? 4310813
关于积分的说明 13432372
捐赠科研通 4138156
什么是DOI,文献DOI怎么找? 2267123
邀请新用户注册赠送积分活动 1270164
关于科研通互助平台的介绍 1206454