Development of a coupled model of heat generation and jet flow of lithium-ion batteries during thermal runaway

热失控 核工程 燃烧 机械 喷射(流体) 热的 材料科学 燃烧室 热传导 发热 煤气燃烧器 传热 热力学 化学 物理 工程类 电池(电) 复合材料 功率(物理) 有机化学
作者
Rongchao Zhao,Zhaodan Lai,Weihua Li,Ming Ye,Shanhu Yu
出处
期刊:Journal of energy storage [Elsevier]
卷期号:63: 107048-107048 被引量:13
标识
DOI:10.1016/j.est.2023.107048
摘要

A large amount of heat will be generated during battery thermal runaway. However, the current models for the battery thermal runaway mainly consider the heat generated inside the battery cell and rarely consider the effects of the jet fire. Therefore, it cannot provide an effective way to evaluate the thermal runaway propagation in a battery pack. This study develops a coupled model considering the heat generation inside the battery and the jet fire outside the battery during thermal runaway, which can better evaluate the thermal hazard. Experimental and simulation activities are carried out based on 18,650 cylindrical NCM lithium-ion batteries. First, a test bench is built to trigger and record the thermal runaway. High-speed camera and thermocouples are applied to record the fire shape and temperature. Totally 15 cells with 100 % SOC are abused and six samples experienced intense combustion. The jet fires last for at least 20 s and the maximum combustion temperature was 1075.4 °C, at the location 80 mm above the cell. Then a coupled model consisting of 0D heat generation, gas generation and injection sub-models and 2D CFD sub-model is established based on ANSYS Fluent. The heat and gas generation rates inside the battery are calculated based on chemical reaction mechanisms. The flow, combustion and heat transfer in the open space are solved in a 2D axisymmetric domain. The proposed model can reasonably capture the main characteristic of the jet fire and temperature rise during thermal runaway. The maximum deviation of peak temperature between the experiment and simulation is 8.56 %.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光的水壶完成签到,获得积分10
刚刚
木野狐完成签到,获得积分10
刚刚
华仔应助辛勤的初晴采纳,获得10
刚刚
刚刚
1秒前
1秒前
柴火烧叽完成签到,获得积分10
2秒前
田様应助小罗飞飞飞采纳,获得10
2秒前
佛系完成签到 ,获得积分10
2秒前
2秒前
丫丫完成签到,获得积分10
2秒前
bkagyin应助凤凰山采纳,获得10
3秒前
星星发布了新的文献求助10
4秒前
5秒前
义气大象完成签到,获得积分10
5秒前
大方嵩发布了新的文献求助10
5秒前
Cacilhas完成签到 ,获得积分10
5秒前
0000发布了新的文献求助30
5秒前
豆子发布了新的文献求助10
5秒前
Jenny应助木野狐采纳,获得10
5秒前
Khr1stINK发布了新的文献求助10
6秒前
牛牛完成签到,获得积分10
7秒前
7秒前
7秒前
li完成签到,获得积分10
7秒前
无花果应助发嗲的忆寒采纳,获得30
7秒前
xiaotudou95应助excellent_shit采纳,获得10
8秒前
btcat完成签到,获得积分10
8秒前
小蘑菇应助搬砖道人采纳,获得10
9秒前
思源应助校长采纳,获得10
9秒前
鸣隐完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
12秒前
12秒前
科研通AI5应助yx采纳,获得10
12秒前
13秒前
hym完成签到,获得积分10
13秒前
马静雨关注了科研通微信公众号
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794