🔥 科研通第二届『应助活动周』正在进行中,3月24-30日求助秒级响应🚀,千元现金等你拿。当前排名🏆 📚 中科院2025期刊分区📊 已更新
亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Mutually communicated model based on multi‐parametric MRI for automated segmentation and classification of prostate cancer

分割 计算机科学 人工智能 模式识别(心理学) 前列腺癌 基本事实 深度学习 医学 癌症 内科学
作者
Kewen Liu,Piqiang Li,Mārtiņš Otikovs,Xinzhou Ning,Liyang Xia,Xiangyu Wang,Lian Yang,Feng Pan,Zhi Zhang,Guangyao Wu,Han Xie,Qingjia Bao,Xin Zhou,Chaoyang Liu
出处
期刊:Medical Physics [Wiley]
卷期号:50 (6): 3445-3458 被引量:3
标识
DOI:10.1002/mp.16343
摘要

Multiparametric magnetic resonance imaging (mp-MRI) is introduced and established as a noninvasive alternative for prostate cancer (PCa) detection and characterization.To develop and evaluate a mutually communicated deep learning segmentation and classification network (MC-DSCN) based on mp-MRI for prostate segmentation and PCa diagnosis.The proposed MC-DSCN can transfer mutual information between segmentation and classification components and facilitate each other in a bootstrapping way. For classification task, the MC-DSCN can transfer the masks produced by the coarse segmentation component to the classification component to exclude irrelevant regions and facilitate classification. For segmentation task, this model can transfer the high-quality localization information learned by the classification component to the fine segmentation component to mitigate the impact of inaccurate localization on segmentation results. Consecutive MRI exams of patients were retrospectively collected from two medical centers (referred to as center A and B). Two experienced radiologists segmented the prostate regions, and the ground truth of the classification refers to the prostate biopsy results. MC-DSCN was designed, trained, and validated using different combinations of distinct MRI sequences as input (e.g., T2-weighted and apparent diffusion coefficient) and the effect of different architectures on the network's performance was tested and discussed. Data from center A were used for training, validation, and internal testing, while another center's data were used for external testing. The statistical analysis is performed to evaluate the performance of the MC-DSCN. The DeLong test and paired t-test were used to assess the performance of classification and segmentation, respectively.In total, 134 patients were included. The proposed MC-DSCN outperforms the networks that were designed solely for segmentation or classification. Regarding the segmentation task, the classification localization information helped to improve the IOU in center A: from 84.5% to 87.8% (p < 0.01) and in center B: from 83.8% to 87.1% (p < 0.01), while the area under curve (AUC) of PCa classification was improved in center A: from 0.946 to 0.991 (p < 0.02) and in center B: from 0.926 to 0.955 (p < 0.01) as a result of the additional information provided by the prostate segmentation.The proposed architecture could effectively transfer mutual information between segmentation and classification components and facilitate each other in a bootstrapping way, thus outperforming the networks designed to perform only one task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
应助活动周(3月24-30日)排名
今日排名(3月25日)
1#82 nozero
25
570
2#37 浦肯野
16
210
3#21 xjcy
10
110
4#20 Leslie
10
100
5#14 小透明
7
70
6#8 pluto
4
40
7#6 ldtbest0525
2
40
8#6 无恙
3
30
9#4 遇上就这样吧
2
20
10#4 杳鸢
2
20
11#4 imthebestcxlll
1
30
12#4 xlxu
2
20
13#4 村雨
2
20
14#2 jyy
1
10
15#2 Qi
1
10
16#2 qduxl
1
10
17#2 pencil123
1
10
18#2 竹筏过海
1
10
19#2 MXG
1
10
20#2 CAOHOU
1
10
21#2 樱桃猴子
1
10
第1名:50元;第2名:30元;第3名:10元

总排名
1#1198 nozero
484
7140
2#927 科研小民工
339
5880
3#838 shinysparrow
371
4670
4#610 SYLH
305
3050
5#431 小透明
198
2330
6#206 xjcy
102
1040
7#181 浦肯野
77
1040
8#150 子车茗
73
770
9#134 Leon
66
680
10#133 36456657
65
680
11#122 whisper
61
610
12#118 我是站长才怪
59
590
13#105 昏睡的蟠桃
43
620
14#104 火星上的菲鹰
52
520
15#98 毛豆
49
490
16#98 zho
49
490
17#93 灵巧高山
35
580
18#93 curtisness
46
470
19#92 史小菜
44
480
20#78 哎嘿
38
400
21#74 劲秉
28
460
22#73 tuanheqi
10
630
23#70 hbsand
34
360
24#66 muxiangrong
30
360
25#64 Catalina_S
32
320
26#58 S77
29
290
27#56 研友_Z30GJ8
27
290
28#54 敬老院1号
4
500
29#54 Leif
27
270
30#52 suibianba
25
270
31#52 QOP
26
260
32#52 实验好难
26
260
33#50 木头马尾
25
250
34#44 Auston_zhong
22
220
35#42 云瑾
21
210
36#42 无敌最俊朗
18
240
37#42 CAOHOU
21
210
38#42 Lars汉堡
21
210
39#40 迟大猫
20
200
40#40 怼怼
20
200
41#39 贰鸟
19
200
42#39 cdercder
15
240
43#38 xunxunmimi
19
190
44#38 加菲丰丰
19
190
45#36 紫色水晶之恋
18
180
46#36 魔幻的幻枫
18
180
47#36 斯文的寒风
18
180
48#36 体贴凌柏
18
180
49#36 酷炫的毛巾
18
180
50#34 喜悦成威
17
170
第1名:500元;第2名:300元;第3名:100元
第4名:50元;第5名:30元;第6-10名:10元

10分钟更新一次,完整排名情况
实时播报
络桵完成签到,获得积分10
16秒前
NexusExplorer应助江洋大盗采纳,获得10
40秒前
1分钟前
1分钟前
柠檬树发布了新的文献求助10
1分钟前
江洋大盗发布了新的文献求助10
1分钟前
1分钟前
wuzard完成签到,获得积分10
1分钟前
1分钟前
柠檬树完成签到,获得积分10
1分钟前
CipherSage应助ZgnomeshghT采纳,获得10
1分钟前
1分钟前
zhj发布了新的文献求助10
1分钟前
zhj完成签到,获得积分20
1分钟前
xjcy应助沉默的海亦采纳,获得10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
DSH完成签到,获得积分10
1分钟前
善良的安卉完成签到,获得积分10
1分钟前
CATH完成签到 ,获得积分10
1分钟前
田様应助飞快的代芹采纳,获得10
1分钟前
jarenthar完成签到 ,获得积分10
2分钟前
Lauren完成签到 ,获得积分10
2分钟前
2分钟前
GDL完成签到 ,获得积分10
2分钟前
2分钟前
淡然老头完成签到 ,获得积分10
2分钟前
FFFF完成签到,获得积分20
2分钟前
苗条绝义完成签到,获得积分10
2分钟前
DrN完成签到 ,获得积分10
2分钟前
草木完成签到 ,获得积分10
2分钟前
敏感的飞松完成签到 ,获得积分10
2分钟前
吴宵完成签到,获得积分10
3分钟前
3分钟前
Ethan发布了新的文献求助10
3分钟前
STA24发布了新的文献求助10
3分钟前
123~!完成签到,获得积分10
3分钟前
风中小刺猬完成签到,获得积分10
3分钟前
FFFF发布了新的文献求助50
3分钟前
星火完成签到,获得积分10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Continuum Thermodynamics and Material Modelling 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Conference Record, IAS Annual Meeting 1977 1250
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Rethinking Language Education in the Age of Generative AI Edited ByZhongfeng Tian, Chaoran Wang 900
British Girl Chinese Wife (New World Press, 1985) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3613181
求助须知:如何正确求助?哪些是违规求助? 3184777
关于积分的说明 9606441
捐赠科研通 2890775
什么是DOI,文献DOI怎么找? 1585828
邀请新用户注册赠送积分活动 745930
科研通“疑难数据库(出版商)”最低求助积分说明 728056