Using Machine Learning and Deep Learning Algorithms to Predict Postoperative Outcomes Following Anterior Cervical Discectomy and Fusion

颈椎前路椎间盘切除融合术 机器学习 医学 椎间盘切除术 人工智能 椎间盘切除术 融合 脊柱融合术 颈椎 算法 计算机科学 外科 腰椎 腰椎 哲学 语言学 颈椎
作者
Rushmin Khazanchi,Anitesh Bajaj,Rohan Shah,Austin R. Chen,Samuel G. Reyes,Steven S. Kurapaty,Wellington K. Hsu,Alpesh A. Patel,Srikanth N. Divi
出处
期刊:Clinical spine surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:36 (3): 143-149 被引量:3
标识
DOI:10.1097/bsd.0000000000001443
摘要

Study Design: A retrospective cohort study from a multisite academic medical center. Objective: To construct, evaluate, and interpret a series of machine learning models to predict outcomes related to inpatient health care resource utilization for patients undergoing anterior cervical discectomy and fusion (ACDF). Summary of Background Data: Reducing postoperative health care utilization is an important goal for improving the delivery of surgical care and serves as a metric for quality assessment. Recent data has shown marked hospital resource utilization after ACDF surgery, including readmissions, and ED visits. The burden of postoperative health care use presents a potential application of machine learning techniques, which may be capable of accurately identifying at-risk patients using patient-specific predictors. Methods: Patients 18-88 years old who underwent ACDF from 2011 to 2021 at a multisite academic center and had preoperative lab values within 3 months of surgery were included. Outcomes analyzed included 90-day readmissions, postoperative length of stay, and nonhome discharge. Four machine learning models—Extreme Gradient Boosted Trees, Balanced Random Forest, Elastic-Net Penalized Logistic Regression, and a Neural Network—were trained and evaluated through the Area Under the Curve estimates. Feature importance scores were computed for the highest-performing model per outcome through model-specific metrics. Results: A total of 1026 cases were included in the analysis cohort. All machine learning models were predictive for outcomes of interest, with the Random Forest algorithm consistently demonstrating the strongest average area under the curve performance, with a peak performance of 0.84 for nonhome discharge. Important features varied per outcome, though age, body mass index, American Society of Anesthesiologists classification >2, and medical comorbidities were highly weighted in the studied outcomes. Conclusions: Machine learning models were successfully applied and predictive of postoperative health utilization after ACDF. Deployment of these tools can assist clinicians in determining high-risk patients. Level of Evidence: III.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CodeCraft应助舒服的友安采纳,获得10
1秒前
轻松无剑发布了新的文献求助10
1秒前
Jasper应助派大星采纳,获得10
3秒前
chensiqi发布了新的文献求助10
3秒前
脑洞疼应助dan1029采纳,获得10
4秒前
wanci应助dan1029采纳,获得10
4秒前
在水一方应助dan1029采纳,获得10
4秒前
希望天下0贩的0应助dan1029采纳,获得10
4秒前
FashionBoy应助dan1029采纳,获得10
4秒前
天天快乐应助dan1029采纳,获得10
4秒前
落瑾玘应助dan1029采纳,获得10
4秒前
华仔应助dan1029采纳,获得10
4秒前
香蕉觅云应助dan1029采纳,获得10
4秒前
粗犷的沛容应助dan1029采纳,获得10
4秒前
深情安青应助OA采纳,获得10
5秒前
xft完成签到,获得积分10
5秒前
陈志亨发布了新的文献求助10
5秒前
gty发布了新的文献求助10
6秒前
6秒前
8秒前
9秒前
10秒前
10秒前
wuwuwu1wu完成签到,获得积分10
11秒前
jfw一支笔完成签到,获得积分10
11秒前
11秒前
顾矜应助学习猴采纳,获得10
12秒前
13秒前
轻松无剑完成签到,获得积分10
13秒前
13秒前
qqq完成签到 ,获得积分10
14秒前
科研力力完成签到 ,获得积分20
14秒前
kkk发布了新的文献求助10
14秒前
云阿柔完成签到,获得积分10
14秒前
公冶君浩发布了新的文献求助10
15秒前
在水一方应助猫头嘤采纳,获得10
15秒前
gaomu发布了新的文献求助10
16秒前
bkagyin应助科研通管家采纳,获得10
16秒前
完美世界应助科研通管家采纳,获得10
17秒前
高分求助中
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3111061
求助须知:如何正确求助?哪些是违规求助? 2761270
关于积分的说明 7664744
捐赠科研通 2416259
什么是DOI,文献DOI怎么找? 1282426
科研通“疑难数据库(出版商)”最低求助积分说明 619014
版权声明 599478