Forensic data management and database systems in forensic investigations for cases of missing and unidentified persons in Brazil.

鉴定(生物学) 数据质量 质量(理念) 缺少数据 数据收集 数据管理 数据科学 计算机科学 工程类 数据挖掘 社会学 运营管理 社会科学 植物 生物 认识论 机器学习 哲学 公制(单位)
作者
Melina Calmon Silva
出处
期刊:PubMed 卷期号:7 (4): 599-608 被引量:3
标识
DOI:10.1080/20961790.2022.2076994
摘要

Forensic investigations, especially those related to missing persons and unidentified remains, produce different types of data that must be managed and understood. The data collected and produced are extensive and originate from various sources: the police, non-governmental organizations (NGOs), medical examiner offices, specialised forensic teams, family members, and others. Some examples of information include, but are not limited to, the investigative background information, excavation data of burial sites, antemortem data on missing persons, and postmortem data on the remains of unidentified individuals. These complex data must be stored in a secured place, analysed, compared, shared, and then reported to the investigative actors and the public, especially the families of missing persons, who should be kept informed of the investigation. Therefore, a data management system with the capability of performing the tasks relevant to the goals of the investigation and the identification of an individual, while respecting the deceased and their families, is critical for standardising investigations. Data management is crucial to assure the quality of investigative processes, and it must be recognised as a holistic integrated system. The aim of this article is to discuss some of the most important components of an effective forensic data management system. The discussion is enriched by examples, challenges, and lessons learned from the erratic development and launching of databases for missing and unidentified persons in Brazil. The main objective of this article is to bring attention to the urgent need for an effective and integrated system in Brazil.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
林夏应助伯赏盼晴采纳,获得10
刚刚
Hugsy完成签到,获得积分10
1秒前
1秒前
沐沐完成签到,获得积分20
2秒前
zhaoyg发布了新的文献求助10
2秒前
Naomi发布了新的文献求助10
3秒前
3秒前
Bovr完成签到,获得积分20
3秒前
3秒前
3秒前
星辰大海应助友好代亦采纳,获得10
4秒前
4秒前
李健的小迷弟应助Zzziihao采纳,获得10
4秒前
4秒前
深情安青应助Alex采纳,获得10
5秒前
5秒前
5秒前
大胆以蕊完成签到,获得积分10
5秒前
田様应助young406采纳,获得10
6秒前
6秒前
Kkkkkk完成签到,获得积分10
6秒前
7秒前
absorb发布了新的文献求助10
7秒前
lingling发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
湛湛发布了新的文献求助10
8秒前
lll完成签到,获得积分10
9秒前
星星人完成签到,获得积分10
9秒前
领导范儿应助Bailey采纳,获得30
10秒前
10秒前
ZZH发布了新的文献求助10
10秒前
尚欣雨完成签到,获得积分10
10秒前
CodeCraft应助杨德帅采纳,获得10
10秒前
帅哥发布了新的文献求助10
10秒前
10秒前
可乐完成签到,获得积分10
11秒前
顺心凡梦发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791