Shield attitude prediction based on Bayesian-LGBM machine learning

护盾 计算机科学 贝叶斯概率 姿态控制 排名(信息检索) 控制(管理) 人工智能 机器学习 工程类 控制工程 地质学 岩石学
作者
Hongyu Chen,Xinyi Li,Zongbao Feng,Lei Wang,Yawei Qin,Mirosław J. Skibniewski,Zhen‐Song Chen,Yang Liu
出处
期刊:Information Sciences [Elsevier]
卷期号:632: 105-129 被引量:39
标识
DOI:10.1016/j.ins.2023.03.004
摘要

Effective shield attitude control is essential for the quality and safety of shield construction. The traditional shield attitude control method is manual control based on a driver's experience, which has the defects of hysteresis and poor reliability. This research proposes an intelligent method to predict the shield attitude based on a Bayesian-light gradient boosting machine (LGBM) model. The constructed model includes 29 parameters that impact the shield attitude and 6 parameters that represent the shield attitude. The developed the Bayesian-LGBM model can predict the shield attitude and support shield attitude control by adjusting construction parameters and conducting iterative prediction. Guiyang rail transit line 3 is selected as a case study to verify the effectiveness of the proposed method. The results indicate that: (1) The developed Bayesian-LGBM model is able to effectively predict the shield attitude; (2) The importance ranking can clarify the key construction parameters that should be controlled; (3) The proposed method enables supporting the effective shield attitude control by continuously adjusting the shield construction parameters. The proposed attitude guidance control method based on the proposed Bayesian-LGBM model can be used to provide a reference for actual shield attitude applications and other similar problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CodeCraft应助Painkiller_采纳,获得10
5秒前
Hua完成签到,获得积分10
6秒前
ppp完成签到,获得积分10
6秒前
7秒前
9秒前
英勇的严青完成签到,获得积分10
9秒前
10秒前
云止完成签到 ,获得积分10
12秒前
研友_Zb1rln发布了新的文献求助10
13秒前
可可西里发布了新的文献求助80
15秒前
fanxiangli完成签到,获得积分20
16秒前
19秒前
隐形曼青应助Painkiller_采纳,获得10
20秒前
肥猫完成签到,获得积分10
22秒前
23秒前
此时此刻完成签到,获得积分10
24秒前
mary完成签到,获得积分10
25秒前
情怀应助凯撒采纳,获得10
26秒前
小蘑菇应助6and1采纳,获得30
27秒前
不二完成签到 ,获得积分10
28秒前
28秒前
小曾完成签到,获得积分10
29秒前
研友_VZG7GZ应助归海亦云采纳,获得10
30秒前
30秒前
30秒前
6666发布了新的文献求助10
33秒前
龙龙冲完成签到,获得积分20
33秒前
33秒前
34秒前
mary发布了新的文献求助10
35秒前
活力惜海发布了新的文献求助10
37秒前
凯撒发布了新的文献求助10
38秒前
40秒前
英俊的铭应助Painkiller_采纳,获得10
41秒前
JuntaoLi发布了新的文献求助10
42秒前
大模型应助fanxiangli采纳,获得10
43秒前
呼延子默发布了新的文献求助10
47秒前
112发布了新的文献求助10
47秒前
顾矜应助灶鲜森采纳,获得10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306536
求助须知:如何正确求助?哪些是违规求助? 4452296
关于积分的说明 13854370
捐赠科研通 4339755
什么是DOI,文献DOI怎么找? 2382830
邀请新用户注册赠送积分活动 1377724
关于科研通互助平台的介绍 1345400