护盾
计算机科学
贝叶斯概率
姿态控制
排名(信息检索)
控制(管理)
人工智能
机器学习
工程类
控制工程
地质学
岩石学
作者
Hongyu Chen,Xinyi Li,Zongbao Feng,Lei Wang,Yawei Qin,Mirosław J. Skibniewski,Zhen‐Song Chen,Yang Liu
标识
DOI:10.1016/j.ins.2023.03.004
摘要
Effective shield attitude control is essential for the quality and safety of shield construction. The traditional shield attitude control method is manual control based on a driver's experience, which has the defects of hysteresis and poor reliability. This research proposes an intelligent method to predict the shield attitude based on a Bayesian-light gradient boosting machine (LGBM) model. The constructed model includes 29 parameters that impact the shield attitude and 6 parameters that represent the shield attitude. The developed the Bayesian-LGBM model can predict the shield attitude and support shield attitude control by adjusting construction parameters and conducting iterative prediction. Guiyang rail transit line 3 is selected as a case study to verify the effectiveness of the proposed method. The results indicate that: (1) The developed Bayesian-LGBM model is able to effectively predict the shield attitude; (2) The importance ranking can clarify the key construction parameters that should be controlled; (3) The proposed method enables supporting the effective shield attitude control by continuously adjusting the shield construction parameters. The proposed attitude guidance control method based on the proposed Bayesian-LGBM model can be used to provide a reference for actual shield attitude applications and other similar problems.
科研通智能强力驱动
Strongly Powered by AbleSci AI