Shield attitude prediction based on Bayesian-LGBM machine learning

护盾 计算机科学 贝叶斯概率 姿态控制 排名(信息检索) 控制(管理) 人工智能 机器学习 工程类 控制工程 地质学 岩石学
作者
Hongyu Chen,Xinyi Li,Zongbao Feng,Lei Wang,Yawei Qin,Mirosław J. Skibniewski,Zhen‐Song Chen,Yang Liu
出处
期刊:Information Sciences [Elsevier BV]
卷期号:632: 105-129 被引量:39
标识
DOI:10.1016/j.ins.2023.03.004
摘要

Effective shield attitude control is essential for the quality and safety of shield construction. The traditional shield attitude control method is manual control based on a driver's experience, which has the defects of hysteresis and poor reliability. This research proposes an intelligent method to predict the shield attitude based on a Bayesian-light gradient boosting machine (LGBM) model. The constructed model includes 29 parameters that impact the shield attitude and 6 parameters that represent the shield attitude. The developed the Bayesian-LGBM model can predict the shield attitude and support shield attitude control by adjusting construction parameters and conducting iterative prediction. Guiyang rail transit line 3 is selected as a case study to verify the effectiveness of the proposed method. The results indicate that: (1) The developed Bayesian-LGBM model is able to effectively predict the shield attitude; (2) The importance ranking can clarify the key construction parameters that should be controlled; (3) The proposed method enables supporting the effective shield attitude control by continuously adjusting the shield construction parameters. The proposed attitude guidance control method based on the proposed Bayesian-LGBM model can be used to provide a reference for actual shield attitude applications and other similar problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瞬华发布了新的文献求助10
1秒前
申申发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
3秒前
4秒前
4秒前
香蕉觅云应助小椰采纳,获得10
4秒前
子初发布了新的文献求助10
4秒前
5秒前
nihaku完成签到,获得积分10
5秒前
julia完成签到,获得积分10
5秒前
6秒前
所所应助Lina采纳,获得10
6秒前
汉堡包应助二大爷采纳,获得10
6秒前
liang发布了新的文献求助10
7秒前
hushy发布了新的文献求助10
7秒前
Clarity发布了新的文献求助10
8秒前
9秒前
科研通AI2S应助LIO采纳,获得10
9秒前
油麦菜发布了新的文献求助10
9秒前
9秒前
完美世界应助小麦大可采纳,获得50
10秒前
10秒前
斯文败类应助单薄的风华采纳,获得10
10秒前
whoops完成签到 ,获得积分10
11秒前
Amu1uu应助Zetlynn采纳,获得10
11秒前
爆米花应助MORNING采纳,获得10
11秒前
Hello应助小巧的忘幽采纳,获得10
11秒前
华仔应助哦豁拐咯采纳,获得10
11秒前
12秒前
是江江哥啊完成签到,获得积分10
12秒前
lllll发布了新的文献求助10
13秒前
hf完成签到,获得积分20
13秒前
白福情完成签到,获得积分10
13秒前
morina9301完成签到,获得积分10
14秒前
脑洞疼应助叶95采纳,获得10
14秒前
伍教授完成签到,获得积分10
15秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952008
求助须知:如何正确求助?哪些是违规求助? 3497414
关于积分的说明 11087298
捐赠科研通 3228031
什么是DOI,文献DOI怎么找? 1784626
邀请新用户注册赠送积分活动 868824
科研通“疑难数据库(出版商)”最低求助积分说明 801198