Shield attitude prediction based on Bayesian-LGBM machine learning

护盾 计算机科学 贝叶斯概率 姿态控制 排名(信息检索) 控制(管理) 人工智能 机器学习 工程类 控制工程 地质学 岩石学
作者
Hongyu Chen,Xinyi Li,Zongbao Feng,Lei Wang,Yawei Qin,Mirosław J. Skibniewski,Zhen‐Song Chen,Yang Liu
出处
期刊:Information Sciences [Elsevier BV]
卷期号:632: 105-129 被引量:39
标识
DOI:10.1016/j.ins.2023.03.004
摘要

Effective shield attitude control is essential for the quality and safety of shield construction. The traditional shield attitude control method is manual control based on a driver's experience, which has the defects of hysteresis and poor reliability. This research proposes an intelligent method to predict the shield attitude based on a Bayesian-light gradient boosting machine (LGBM) model. The constructed model includes 29 parameters that impact the shield attitude and 6 parameters that represent the shield attitude. The developed the Bayesian-LGBM model can predict the shield attitude and support shield attitude control by adjusting construction parameters and conducting iterative prediction. Guiyang rail transit line 3 is selected as a case study to verify the effectiveness of the proposed method. The results indicate that: (1) The developed Bayesian-LGBM model is able to effectively predict the shield attitude; (2) The importance ranking can clarify the key construction parameters that should be controlled; (3) The proposed method enables supporting the effective shield attitude control by continuously adjusting the shield construction parameters. The proposed attitude guidance control method based on the proposed Bayesian-LGBM model can be used to provide a reference for actual shield attitude applications and other similar problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YLL完成签到,获得积分10
刚刚
木梨子完成签到,获得积分10
1秒前
橙子发布了新的文献求助10
1秒前
1秒前
文艺的雨完成签到,获得积分10
2秒前
3秒前
huahua完成签到,获得积分10
3秒前
英俊的铭应助dry采纳,获得10
4秒前
小橘完成签到,获得积分10
5秒前
5秒前
琥1完成签到,获得积分10
5秒前
maguodrgon发布了新的文献求助10
6秒前
虚幻的亦旋完成签到,获得积分10
6秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
Babytucky发布了新的文献求助10
9秒前
柴鱼完成签到,获得积分10
11秒前
零琳完成签到 ,获得积分20
12秒前
雪王完成签到,获得积分10
12秒前
13秒前
13秒前
NexusExplorer应助炫彩小陈采纳,获得10
13秒前
16秒前
顾矜应助mds采纳,获得10
18秒前
19秒前
kaier完成签到 ,获得积分0
20秒前
20秒前
21秒前
22秒前
zhuwei完成签到,获得积分10
23秒前
希音发布了新的文献求助10
23秒前
huahua发布了新的文献求助10
24秒前
小鹿呀完成签到,获得积分10
24秒前
25秒前
crescent发布了新的文献求助20
26秒前
27秒前
Babytucky完成签到,获得积分20
27秒前
卜念发布了新的文献求助10
27秒前
正版DY完成签到,获得积分10
28秒前
28秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142180
求助须知:如何正确求助?哪些是违规求助? 4340425
关于积分的说明 13517521
捐赠科研通 4180348
什么是DOI,文献DOI怎么找? 2292405
邀请新用户注册赠送积分活动 1293003
关于科研通互助平台的介绍 1235514