White Flies and Black Aphids Detection in Field Vegetable Crops using Deep Learning

深度学习 人工智能 水准点(测量) 目标检测 计算机科学 领域(数学) 机器学习 模式识别(心理学) 数学 地图学 纯数学 地理
作者
Nikolaos Giakoumoglou,E.M. Pechlivani,N. Katsoulas,Dimitrios Tzovaras
标识
DOI:10.1109/ipas55744.2022.10052855
摘要

Digital image processing for the early detection of plant pests as insects in vegetable crops is essential for plant's yield and quality. In recent years, deep learning has made strides in the digital image processing, opening up new possibilities for pest monitoring. In this paper, state-of-the-art deep learning models are presented to detect common insect pests in vegetable cultivation named whiteflies and black aphids. Due to the absence of data sources addressing the aforementioned insect pests, adhesive traps for catching the target insects were used for the creation of an annotated image dataset. In total 225 images were collected, and 5904 insect instances were labelled by expert agronomists. This dataset faces many challenges such as the tiny size of objects, occlusions and resemblance. Object detection models were used like YOLOv3, YOLOv5, Faster R-CNN, Mask R-CNN, and RetinaNet as baseline algorithms for benchmark experiments. For achieving accurate results, data augmentation was used. This study has addressed these challenges by applying deep learning models which are able to deal with tiny object detection ascribed to very small insect size. The experiment results exhibit a mean Average Precision (mAP) of 75%. Dataset is available for download at https://zenodo.org/record/7139220
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助55555采纳,获得10
1秒前
CLAIR发布了新的文献求助10
1秒前
nk完成签到 ,获得积分10
6秒前
高大逊发布了新的文献求助10
8秒前
路老师完成签到,获得积分10
9秒前
SMG完成签到 ,获得积分10
11秒前
TQY完成签到 ,获得积分20
15秒前
15秒前
Owen应助邵洋采纳,获得10
16秒前
Taylor完成签到,获得积分10
17秒前
传统的妖妖完成签到,获得积分20
18秒前
melisa发布了新的文献求助10
22秒前
Ava应助CLAIR采纳,获得10
23秒前
勤劳寒烟完成签到,获得积分10
23秒前
al完成签到 ,获得积分10
24秒前
秋风今是发布了新的文献求助10
25秒前
lilac完成签到,获得积分10
26秒前
苏杉杉完成签到,获得积分20
29秒前
31秒前
31秒前
Lucas应助melisa采纳,获得10
32秒前
34秒前
34秒前
36秒前
JamesPei应助利多卡因采纳,获得10
38秒前
邵洋发布了新的文献求助10
39秒前
CodeCraft应助化学兔八哥采纳,获得10
40秒前
热锅上的蚂蚁完成签到,获得积分10
41秒前
Popelp完成签到 ,获得积分10
41秒前
田様应助送你一朵小红花采纳,获得10
42秒前
清新的苑博完成签到,获得积分10
45秒前
NexusExplorer应助醉熏的如雪采纳,获得10
45秒前
ding应助纸鹤采纳,获得10
45秒前
江河湖海完成签到,获得积分20
46秒前
lucky珠完成签到,获得积分10
47秒前
简单的冬瓜完成签到,获得积分10
47秒前
淡然的铭完成签到,获得积分10
47秒前
48秒前
48秒前
桐桐应助SeliqAq采纳,获得10
49秒前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
Mercury and Silver Mining in the Colonial Atlantic 300
Studi sul Vicino Oriente antico dedicati alla memoria di Luigi Cagni vol.1 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3375209
求助须知:如何正确求助?哪些是违规求助? 2991849
关于积分的说明 8747557
捐赠科研通 2675896
什么是DOI,文献DOI怎么找? 1465859
科研通“疑难数据库(出版商)”最低求助积分说明 677996
邀请新用户注册赠送积分活动 669663