MFEFNet: Multi-scale feature enhancement and Fusion Network for polyp segmentation

特征(语言学) 计算机科学 分割 骨干网 模式识别(心理学) 块(置换群论) 人工智能 水准点(测量) 交叉口(航空) 数学 工程类 航空航天工程 哲学 几何学 语言学 地理 计算机网络 大地测量学
作者
Yang Xia,Haijiao Yun,Yanjun Liu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:157: 106735-106735 被引量:11
标识
DOI:10.1016/j.compbiomed.2023.106735
摘要

The polyp segmentation technology based on computer-aided can effectively avoid the deterioration of polyps and prevent colorectal cancer. To segment the polyp target precisely, the Multi-Scale Feature Enhancement and Fusion Network (MFEFNet) is proposed. First of all, to balance the network's predictive ability and complexity, ResNet50 is designed as the backbone network, and the Shift Channel Block (SCB) is used to unify the spatial location of feature mappings and emphasize local information. Secondly, to further improve the network's feature-extracting ability, the Feature Enhancement Block (FEB) is added, which decouples features, reinforces features by multiple perspectives and reconstructs features. Meanwhile, to weaken the semantic gap in the feature fusion process, we propose strong associated couplers, the Multi-Scale Feature Fusion Block (MSFFB) and the Reducing Difference Block (RDB), which are mainly composed of multiple cross-complementary information interaction modes and reinforce the long-distance dependence between features. Finally, to further refine local regions, the Polarized Self-Attention (PSA) and the Balancing Attention Module (BAM) are introduced for better exploration of detailed information between foreground and background boundaries. Experiments have been conducted under five benchmark datasets (Kvasir-SEG, CVC-ClinicDB, CVC-ClinicDB, CVC300 and CVC-ColonDB) and compared with state-of-the-art polyp segmentation algorithms. The experimental result shows that the proposed network improves Dice and mean intersection over union (mIoU) by an average score of 3.4% and 4%, respectively. Therefore, extensive experiments demonstrate that the proposed network performs favorably against more than a dozen state-of-the-art methods on five popular polyp segmentation benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由语柳给自由语柳的求助进行了留言
1秒前
2秒前
宋小威发布了新的文献求助10
3秒前
4秒前
5秒前
Owen应助洁净的大山采纳,获得10
5秒前
6秒前
木木198022完成签到,获得积分10
6秒前
7秒前
糊涂生活糊涂过完成签到,获得积分10
7秒前
rr完成签到,获得积分10
8秒前
李悟尔发布了新的文献求助10
8秒前
pearlwh1227发布了新的文献求助10
9秒前
9秒前
科研小白完成签到,获得积分10
10秒前
笨笨沛文完成签到,获得积分10
11秒前
Serein发布了新的文献求助10
11秒前
11秒前
复杂的雨寒完成签到,获得积分20
12秒前
郭小宝发布了新的文献求助10
12秒前
13秒前
13秒前
Lucas应助李悟尔采纳,获得50
13秒前
14秒前
14秒前
小麦完成签到,获得积分10
16秒前
红箭烟雨发布了新的文献求助10
16秒前
xkh发布了新的文献求助10
18秒前
XWT发布了新的文献求助10
18秒前
dou发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
Bella完成签到 ,获得积分10
22秒前
玉玉完成签到,获得积分10
23秒前
红箭烟雨完成签到,获得积分10
23秒前
LLLLLJ完成签到,获得积分10
24秒前
A梦完成签到,获得积分10
24秒前
pppy完成签到,获得积分10
24秒前
Gaahung完成签到,获得积分10
26秒前
26秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979763
求助须知:如何正确求助?哪些是违规求助? 3523767
关于积分的说明 11218570
捐赠科研通 3261233
什么是DOI,文献DOI怎么找? 1800507
邀请新用户注册赠送积分活动 879121
科研通“疑难数据库(出版商)”最低求助积分说明 807182