特征(语言学)
计算机科学
分割
骨干网
模式识别(心理学)
块(置换群论)
人工智能
水准点(测量)
交叉口(航空)
数学
工程类
航空航天工程
哲学
几何学
语言学
地理
计算机网络
大地测量学
作者
Yang Xia,Haijiao Yun,Yanjun Liu
标识
DOI:10.1016/j.compbiomed.2023.106735
摘要
The polyp segmentation technology based on computer-aided can effectively avoid the deterioration of polyps and prevent colorectal cancer. To segment the polyp target precisely, the Multi-Scale Feature Enhancement and Fusion Network (MFEFNet) is proposed. First of all, to balance the network's predictive ability and complexity, ResNet50 is designed as the backbone network, and the Shift Channel Block (SCB) is used to unify the spatial location of feature mappings and emphasize local information. Secondly, to further improve the network's feature-extracting ability, the Feature Enhancement Block (FEB) is added, which decouples features, reinforces features by multiple perspectives and reconstructs features. Meanwhile, to weaken the semantic gap in the feature fusion process, we propose strong associated couplers, the Multi-Scale Feature Fusion Block (MSFFB) and the Reducing Difference Block (RDB), which are mainly composed of multiple cross-complementary information interaction modes and reinforce the long-distance dependence between features. Finally, to further refine local regions, the Polarized Self-Attention (PSA) and the Balancing Attention Module (BAM) are introduced for better exploration of detailed information between foreground and background boundaries. Experiments have been conducted under five benchmark datasets (Kvasir-SEG, CVC-ClinicDB, CVC-ClinicDB, CVC300 and CVC-ColonDB) and compared with state-of-the-art polyp segmentation algorithms. The experimental result shows that the proposed network improves Dice and mean intersection over union (mIoU) by an average score of 3.4% and 4%, respectively. Therefore, extensive experiments demonstrate that the proposed network performs favorably against more than a dozen state-of-the-art methods on five popular polyp segmentation benchmarks.
科研通智能强力驱动
Strongly Powered by AbleSci AI