Symbolic machine learning improved MCFT model for punching shear resistance of FRP-reinforced concrete slabs

符号回归 计算机科学 结构工程 遗传程序设计 人工智能 工程类
作者
Shixue Liang,Yuanxie Shen,Xiangling Gao,Yiqing Cai,Zhengyu Fei
出处
期刊:Journal of building engineering [Elsevier]
卷期号:69: 106257-106257 被引量:18
标识
DOI:10.1016/j.jobe.2023.106257
摘要

Fiber reinforced polymer (FRP)-reinforced concrete slabs, an extension of reinforced concrete (RC) slabs leveraged for resisting environment corrosion, are susceptible to punching shear failure due to the lower elasticity modulus of FRP reinforcement. To estimate the punching shear resistance accurately, there are two types of models (e.g., white box and black-box models) proposed based on theoretical derivations and machine learning methods. However, these two types of models are considered as independent of each other. In this study, a hybrid model (e.g., grey-box model) derived from modified compression field theory (MCFT) is proposed by this paper, in which the performance is improved by a machine-learning-aided approach (genetic programming). In order to exploit the performance of machine learning, a database containing 154 experimental data is established and used for fitting the correction equations. Iterating the population containing 300 tree-based individuals in 300 times, a correction equation with simple format is obtained, which performs well in performance improvement of the basic model derived from MCFT. Herein, the influential factors involved in the correction equation comply with the sorting in order of the importance quantified by extreme gradient boosting (XGBoost) and shapley additive explanation (SHAP). Combining the correction equation with the basic model derived from MCFT, a symbolic regression MCFT (SR-MCFT) model is established, which performs better prediction performance than other five empirical models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助加加采纳,获得10
刚刚
自信鞯发布了新的文献求助10
1秒前
踏实半雪完成签到,获得积分10
2秒前
生动初蓝完成签到,获得积分10
2秒前
李健应助皂荚树下的桑葚采纳,获得10
4秒前
4秒前
5秒前
白华苍松发布了新的文献求助20
5秒前
6秒前
自信筮发布了新的文献求助20
6秒前
白樱恋曲完成签到,获得积分20
7秒前
FearNothing发布了新的文献求助10
7秒前
酷波er应助兴奋的觅露采纳,获得10
7秒前
传奇3应助zfy采纳,获得10
8秒前
就是笨怎么了完成签到,获得积分10
8秒前
9秒前
小马甲应助平安喜乐采纳,获得10
9秒前
beibeibaobao发布了新的文献求助10
10秒前
Capybara完成签到,获得积分10
11秒前
李健应助调皮的翠绿采纳,获得10
11秒前
13秒前
14秒前
14秒前
兜兜发布了新的文献求助10
15秒前
15秒前
今后应助孤独的匕采纳,获得10
17秒前
17秒前
17秒前
17秒前
18秒前
科研傻子发布了新的文献求助10
18秒前
酷波er应助鲁大师采纳,获得10
18秒前
kmmu0611发布了新的文献求助30
18秒前
lili完成签到,获得积分10
18秒前
19秒前
大力鳗鱼发布了新的文献求助10
19秒前
20秒前
迷路曼青发布了新的文献求助10
21秒前
GGbond完成签到,获得积分10
21秒前
22秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158072
求助须知:如何正确求助?哪些是违规求助? 2809436
关于积分的说明 7881999
捐赠科研通 2467898
什么是DOI,文献DOI怎么找? 1313783
科研通“疑难数据库(出版商)”最低求助积分说明 630538
版权声明 601943