Assessing GPT‐4's accuracy in answering clinical pharmacological questions on pain therapy

可用性 医学 背景(考古学) 医学物理学 计算机科学 生物 古生物学 人机交互
作者
Anna Stroop,Tabea Stroop,Samer Zawy Alsofy,Moritz Wegner,Makoto Nakamura,Ralf Stroop
出处
期刊:British Journal of Clinical Pharmacology [Wiley]
标识
DOI:10.1002/bcp.70036
摘要

This study aimed to evaluate the accuracy and completeness of GPT-4, a large language model, in answering clinical pharmacological questions related to pain therapy, with a focus on its potential as a tool for delivering patient-facing medical information. The objective was to assess its reliability in delivering medical information in the context of pain management. A cross-sectional survey-based study was conducted with healthcare professionals, including physicians and pharmacists. Participants submitted up to 8 clinical pharmacology questions on pain management, focusing on drug interactions, dosages and contraindications. GPT-4's responses were evaluated based on comprehensibility, detail, satisfaction, medical-pharmacological accuracy and completeness. Additionally, responses were compared to the German Drug Directory to assess their accuracy. The majority of participants (99%) found GPT-4's responses comprehensible, while 84% considered the information detailed enough. Overall satisfaction was high, with 93% expressing satisfaction, and 96% deemed the responses medically accurate. However, only 63% rated the information as complete, with some identifying gaps in pharmacokinetics and drug interaction data. Usability was evaluated as good to excellent, with a System Usability Scale score of 83.38 (± 10.26). GPT-4 demonstrates potential as a tool for delivering medical information, particularly in pain management. However, limitations such as incomplete pharmacological data and the potential for contextual carryover in follow-up questions suggest that further refinement is necessary. Developing specialized artificial intelligence tools that integrate real-time pharmacological databases could improve accuracy and reliability for clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
豆豆发布了新的文献求助10
刚刚
2秒前
神勇寄松完成签到,获得积分10
2秒前
果茶去冰完成签到 ,获得积分10
2秒前
Jasper应助从容的灭绝采纳,获得10
2秒前
flymove发布了新的文献求助10
2秒前
baiquanci发布了新的文献求助10
2秒前
3秒前
隐形曼青应助higgs采纳,获得10
3秒前
KKKK发布了新的文献求助10
3秒前
彭于晏应助小团子采纳,获得10
3秒前
大脑袋完成签到,获得积分0
4秒前
4秒前
今后应助故意的鼠标采纳,获得10
5秒前
李健应助小余同学采纳,获得10
5秒前
顾矜应助欢喜的跳跳糖采纳,获得30
6秒前
yunsww发布了新的文献求助10
7秒前
8秒前
bai发布了新的文献求助10
8秒前
9秒前
望北楼主发布了新的文献求助10
9秒前
无花果应助iNk采纳,获得10
9秒前
胡志飞完成签到,获得积分20
10秒前
10秒前
zorofu5完成签到,获得积分10
10秒前
Qiao完成签到,获得积分10
11秒前
上官若男应助浅色墨水采纳,获得10
12秒前
英俊的铭应助灵灵采纳,获得10
13秒前
研友_rLmNXn发布了新的文献求助10
14秒前
Eureka发布了新的文献求助10
14秒前
巫马初曼完成签到,获得积分10
14秒前
15秒前
干净的千山完成签到,获得积分10
16秒前
WWshu应助爱因斯坦采纳,获得10
16秒前
16秒前
17秒前
18秒前
laa发布了新的文献求助10
20秒前
爆米花应助文章仙人采纳,获得10
20秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962022
求助须知:如何正确求助?哪些是违规求助? 3508316
关于积分的说明 11140304
捐赠科研通 3240919
什么是DOI,文献DOI怎么找? 1791125
邀请新用户注册赠送积分活动 872741
科研通“疑难数据库(出版商)”最低求助积分说明 803352