A Thorough Review of the Clinical Applications of Artificial Intelligence in Lung Cancer

肺癌 癌症 计算机科学 医学 医学物理学 重症监护医学 病理 内科学
作者
Serafeim‐Chrysovalantis Kotoulas,Dionysios Spyratos,Κonstantinos Porpodis,Kalliopi Domvri,Afroditi Boutou,Evangelos Kaimakamis,Christina Mouratidou,Ioannis Alevroudis,Vasiliki Dourliou,Kalliopi Tsakiri,Agni Sakkou,Alexandra Marneri,Elena Angeloudi,Ioanna Papagiouvanni,Anastasia Michailidou,Konstantinos Malandris,Constantinos Mourelatos,Alexandros Tsantos,Athanasia Pataka
出处
期刊:Cancers [Multidisciplinary Digital Publishing Institute]
卷期号:17 (5): 882-882
标识
DOI:10.3390/cancers17050882
摘要

According to data from the World Health Organization (WHO), lung cancer is becoming a global epidemic. It is particularly high in the list of the leading causes of death not only in developed countries, but also worldwide; furthermore, it holds the leading place in terms of cancer-related mortality. Nevertheless, many breakthroughs have been made the last two decades regarding its management, with one of the most prominent being the implementation of artificial intelligence (AI) in various aspects of disease management. We included 473 papers in this thorough review, most of which have been published during the last 5–10 years, in order to describe these breakthroughs. In screening programs, AI is capable of not only detecting suspicious lung nodules in different imaging modalities—such as chest X-rays, computed tomography (CT), and positron emission tomography (PET) scans—but also discriminating between benign and malignant nodules as well, with success rates comparable to or even better than those of experienced radiologists. Furthermore, AI seems to be able to recognize biomarkers that appear in patients who may develop lung cancer, even years before this event. Moreover, it can also assist pathologists and cytologists in recognizing the type of lung tumor, as well as specific histologic or genetic markers that play a key role in treating the disease. Finally, in the treatment field, AI can guide in the development of personalized options for lung cancer patients, possibly improving their prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zh完成签到,获得积分10
刚刚
LYY完成签到 ,获得积分10
刚刚
baoleijia发布了新的文献求助200
刚刚
豆包完成签到,获得积分10
2秒前
rorraine_xu完成签到,获得积分10
3秒前
李某某应助123采纳,获得10
4秒前
SUE发布了新的文献求助10
5秒前
5秒前
迷路的问丝完成签到,获得积分20
5秒前
6秒前
Lucas应助一叶扁舟采纳,获得10
6秒前
7秒前
科目三应助cyanpomelo采纳,获得10
9秒前
9秒前
deeferf发布了新的文献求助10
10秒前
10秒前
小魔王发布了新的文献求助10
11秒前
13秒前
zhouyu发布了新的文献求助10
13秒前
13秒前
云是完成签到 ,获得积分10
14秒前
李y梅子完成签到 ,获得积分10
15秒前
ran发布了新的文献求助10
15秒前
ChatGPT发布了新的文献求助10
18秒前
成泰乐发布了新的文献求助10
19秒前
少少少完成签到,获得积分10
19秒前
李宫俊发布了新的文献求助10
19秒前
斑马不一般应助吱呜采纳,获得10
20秒前
20秒前
20秒前
王则华关注了科研通微信公众号
21秒前
ran完成签到,获得积分10
22秒前
Fengyun完成签到,获得积分10
22秒前
10完成签到,获得积分10
23秒前
24秒前
25秒前
sunny完成签到 ,获得积分10
26秒前
852应助圆圆采纳,获得10
26秒前
27秒前
sta发布了新的文献求助30
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941061
求助须知:如何正确求助?哪些是违规求助? 4207141
关于积分的说明 13076618
捐赠科研通 3985902
什么是DOI,文献DOI怎么找? 2182363
邀请新用户注册赠送积分活动 1197920
关于科研通互助平台的介绍 1110256