A Thorough Review of the Clinical Applications of Artificial Intelligence in Lung Cancer

肺癌 癌症 计算机科学 医学 医学物理学 重症监护医学 病理 内科学
作者
Serafeim‐Chrysovalantis Kotoulas,Dionysios Spyratos,Κonstantinos Porpodis,Kalliopi Domvri,Afroditi Boutou,Evangelos Kaimakamis,Christina Mouratidou,Ioannis Alevroudis,Vasiliki Dourliou,Kalliopi Tsakiri,Agni Sakkou,Alexandra Marneri,Elena Angeloudi,Ioanna Papagiouvanni,Anastasia Michailidou,Konstantinos Malandris,Constantinos Mourelatos,Alexandros Tsantos,Athanasia Pataka
出处
期刊:Cancers [MDPI AG]
卷期号:17 (5): 882-882
标识
DOI:10.3390/cancers17050882
摘要

According to data from the World Health Organization (WHO), lung cancer is becoming a global epidemic. It is particularly high in the list of the leading causes of death not only in developed countries, but also worldwide; furthermore, it holds the leading place in terms of cancer-related mortality. Nevertheless, many breakthroughs have been made the last two decades regarding its management, with one of the most prominent being the implementation of artificial intelligence (AI) in various aspects of disease management. We included 473 papers in this thorough review, most of which have been published during the last 5–10 years, in order to describe these breakthroughs. In screening programs, AI is capable of not only detecting suspicious lung nodules in different imaging modalities—such as chest X-rays, computed tomography (CT), and positron emission tomography (PET) scans—but also discriminating between benign and malignant nodules as well, with success rates comparable to or even better than those of experienced radiologists. Furthermore, AI seems to be able to recognize biomarkers that appear in patients who may develop lung cancer, even years before this event. Moreover, it can also assist pathologists and cytologists in recognizing the type of lung tumor, as well as specific histologic or genetic markers that play a key role in treating the disease. Finally, in the treatment field, AI can guide in the development of personalized options for lung cancer patients, possibly improving their prognosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XUU关闭了XUU文献求助
1秒前
小明发布了新的文献求助10
1秒前
1秒前
2秒前
cjh发布了新的文献求助10
2秒前
2秒前
bkagyin应助棠棠采纳,获得10
3秒前
bkagyin应助顾翩翩采纳,获得10
3秒前
郭佳怡发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
能干砖家发布了新的文献求助10
6秒前
WU发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
等等发布了新的文献求助10
9秒前
Jasper应助yxy采纳,获得10
9秒前
科研通AI6.1应助xiaoyu采纳,获得10
9秒前
9秒前
looklook发布了新的文献求助10
9秒前
10秒前
Fancy应助bubble采纳,获得30
11秒前
皮代谷发布了新的文献求助10
11秒前
陶逸豪发布了新的文献求助10
11秒前
阿九发布了新的文献求助10
11秒前
abcd完成签到,获得积分20
12秒前
12秒前
今后应助cjh采纳,获得10
12秒前
denny完成签到,获得积分20
13秒前
AAA房地产小王完成签到,获得积分10
13秒前
Meng发布了新的文献求助10
13秒前
13秒前
14秒前
大模型应助jeremyher采纳,获得10
15秒前
15秒前
AN应助WU采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771462
求助须知:如何正确求助?哪些是违规求助? 5591687
关于积分的说明 15427521
捐赠科研通 4904775
什么是DOI,文献DOI怎么找? 2638990
邀请新用户注册赠送积分活动 1586782
关于科研通互助平台的介绍 1541792