A Thorough Review of the Clinical Applications of Artificial Intelligence in Lung Cancer

肺癌 癌症 计算机科学 医学 医学物理学 重症监护医学 病理 内科学
作者
Serafeim‐Chrysovalantis Kotoulas,Dionysios Spyratos,Κonstantinos Porpodis,Kalliopi Domvri,Afroditi Boutou,Evangelos Kaimakamis,Christina Mouratidou,Ioannis Alevroudis,Vasiliki Dourliou,Kalliopi Tsakiri,Agni Sakkou,Alexandra Marneri,Elena Angeloudi,Ioanna Papagiouvanni,Anastasia Michailidou,Konstantinos Malandris,Constantinos Mourelatos,Alexandros Tsantos,Athanasia Pataka
出处
期刊:Cancers [Multidisciplinary Digital Publishing Institute]
卷期号:17 (5): 882-882
标识
DOI:10.3390/cancers17050882
摘要

According to data from the World Health Organization (WHO), lung cancer is becoming a global epidemic. It is particularly high in the list of the leading causes of death not only in developed countries, but also worldwide; furthermore, it holds the leading place in terms of cancer-related mortality. Nevertheless, many breakthroughs have been made the last two decades regarding its management, with one of the most prominent being the implementation of artificial intelligence (AI) in various aspects of disease management. We included 473 papers in this thorough review, most of which have been published during the last 5–10 years, in order to describe these breakthroughs. In screening programs, AI is capable of not only detecting suspicious lung nodules in different imaging modalities—such as chest X-rays, computed tomography (CT), and positron emission tomography (PET) scans—but also discriminating between benign and malignant nodules as well, with success rates comparable to or even better than those of experienced radiologists. Furthermore, AI seems to be able to recognize biomarkers that appear in patients who may develop lung cancer, even years before this event. Moreover, it can also assist pathologists and cytologists in recognizing the type of lung tumor, as well as specific histologic or genetic markers that play a key role in treating the disease. Finally, in the treatment field, AI can guide in the development of personalized options for lung cancer patients, possibly improving their prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
所所应助kidult采纳,获得10
1秒前
烟酰胺完成签到,获得积分10
1秒前
悦白发布了新的文献求助10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
科研通AI2S应助YAO采纳,获得50
2秒前
3秒前
Henry完成签到,获得积分10
3秒前
SciGPT应助xue采纳,获得10
3秒前
慕青应助虾仁采纳,获得10
3秒前
huangwensou发布了新的文献求助10
4秒前
4秒前
4秒前
SUT文献战神完成签到,获得积分10
4秒前
红豆完成签到,获得积分10
4秒前
4秒前
5秒前
香蕉觅云应助糟糕的铁锤采纳,获得10
5秒前
6秒前
孙笑川258完成签到,获得积分10
6秒前
宋宋完成签到,获得积分10
7秒前
7秒前
7秒前
告白气球完成签到,获得积分10
8秒前
Dexter完成签到 ,获得积分10
8秒前
Mario发布了新的文献求助30
9秒前
LXiao完成签到,获得积分10
9秒前
9秒前
9秒前
俏皮卿发布了新的文献求助10
10秒前
曾经寄真完成签到,获得积分10
10秒前
隐形曼青应助乐意你采纳,获得10
10秒前
11秒前
今后应助yang采纳,获得10
11秒前
12秒前
12秒前
花开富贵发布了新的文献求助20
12秒前
mouxq发布了新的文献求助10
12秒前
告白气球发布了新的文献求助10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3955056
求助须知:如何正确求助?哪些是违规求助? 3501390
关于积分的说明 11102563
捐赠科研通 3231634
什么是DOI,文献DOI怎么找? 1786494
邀请新用户注册赠送积分活动 870109
科研通“疑难数据库(出版商)”最低求助积分说明 801813