A Thorough Review of the Clinical Applications of Artificial Intelligence in Lung Cancer

肺癌 癌症 计算机科学 医学 医学物理学 重症监护医学 病理 内科学
作者
Serafeim‐Chrysovalantis Kotoulas,Dionysios Spyratos,Κonstantinos Porpodis,Kalliopi Domvri,Afroditi Boutou,Evangelos Kaimakamis,Christina Mouratidou,Ioannis Alevroudis,Vasiliki Dourliou,Kalliopi Tsakiri,Agni Sakkou,Alexandra Marneri,Elena Angeloudi,Ioanna Papagiouvanni,Anastasia Michailidou,Konstantinos Malandris,Constantinos Mourelatos,Alexandros Tsantos,Athanasia Pataka
出处
期刊:Cancers [MDPI AG]
卷期号:17 (5): 882-882
标识
DOI:10.3390/cancers17050882
摘要

According to data from the World Health Organization (WHO), lung cancer is becoming a global epidemic. It is particularly high in the list of the leading causes of death not only in developed countries, but also worldwide; furthermore, it holds the leading place in terms of cancer-related mortality. Nevertheless, many breakthroughs have been made the last two decades regarding its management, with one of the most prominent being the implementation of artificial intelligence (AI) in various aspects of disease management. We included 473 papers in this thorough review, most of which have been published during the last 5–10 years, in order to describe these breakthroughs. In screening programs, AI is capable of not only detecting suspicious lung nodules in different imaging modalities—such as chest X-rays, computed tomography (CT), and positron emission tomography (PET) scans—but also discriminating between benign and malignant nodules as well, with success rates comparable to or even better than those of experienced radiologists. Furthermore, AI seems to be able to recognize biomarkers that appear in patients who may develop lung cancer, even years before this event. Moreover, it can also assist pathologists and cytologists in recognizing the type of lung tumor, as well as specific histologic or genetic markers that play a key role in treating the disease. Finally, in the treatment field, AI can guide in the development of personalized options for lung cancer patients, possibly improving their prognosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
牛奶咖啡完成签到,获得积分10
2秒前
小南发布了新的文献求助10
2秒前
Zyl完成签到 ,获得积分10
2秒前
3秒前
内向的哈密瓜完成签到,获得积分10
3秒前
加油鸭发布了新的文献求助10
4秒前
科目三应助Tess采纳,获得10
4秒前
9sy完成签到,获得积分10
5秒前
桐桐应助落寞凡双采纳,获得10
5秒前
xx完成签到,获得积分10
6秒前
鹤鸣发布了新的文献求助10
6秒前
ivyyyyyy发布了新的文献求助10
7秒前
慢慢的地理人完成签到,获得积分10
8秒前
8秒前
Upupcc完成签到 ,获得积分10
8秒前
马户发布了新的文献求助10
8秒前
rsy完成签到,获得积分10
9秒前
10秒前
FashionBoy应助wxyllxx采纳,获得10
12秒前
周神完成签到,获得积分10
13秒前
大小姐完成签到,获得积分10
13秒前
周神发布了新的文献求助10
16秒前
Ava应助潇洒映冬采纳,获得10
17秒前
慕青应助wtbo采纳,获得10
19秒前
22秒前
心花怒放发布了新的文献求助10
26秒前
27秒前
太空工程师完成签到,获得积分10
28秒前
30秒前
rsy发布了新的文献求助10
30秒前
优美的梦玉完成签到,获得积分10
32秒前
祈春完成签到,获得积分20
32秒前
爆米花发布了新的文献求助20
33秒前
ivyyyyyy完成签到,获得积分20
33秒前
善学以致用应助心花怒放采纳,获得10
35秒前
35秒前
36秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3565528
求助须知:如何正确求助?哪些是违规求助? 3138490
关于积分的说明 9426917
捐赠科研通 2838955
什么是DOI,文献DOI怎么找? 1560600
邀请新用户注册赠送积分活动 729739
科研通“疑难数据库(出版商)”最低求助积分说明 717597