A Thorough Review of the Clinical Applications of Artificial Intelligence in Lung Cancer

肺癌 癌症 计算机科学 医学 医学物理学 重症监护医学 病理 内科学
作者
Serafeim‐Chrysovalantis Kotoulas,Dionysios Spyratos,Κonstantinos Porpodis,Kalliopi Domvri,Afroditi Boutou,Evangelos Kaimakamis,Christina Mouratidou,Ioannis Alevroudis,Vasiliki Dourliou,Kalliopi Tsakiri,Agni Sakkou,Alexandra Marneri,Elena Angeloudi,Ioanna Papagiouvanni,Anastasia Michailidou,Konstantinos Malandris,Constantinos Mourelatos,Alexandros Tsantos,Athanasia Pataka
出处
期刊:Cancers [MDPI AG]
卷期号:17 (5): 882-882
标识
DOI:10.3390/cancers17050882
摘要

According to data from the World Health Organization (WHO), lung cancer is becoming a global epidemic. It is particularly high in the list of the leading causes of death not only in developed countries, but also worldwide; furthermore, it holds the leading place in terms of cancer-related mortality. Nevertheless, many breakthroughs have been made the last two decades regarding its management, with one of the most prominent being the implementation of artificial intelligence (AI) in various aspects of disease management. We included 473 papers in this thorough review, most of which have been published during the last 5–10 years, in order to describe these breakthroughs. In screening programs, AI is capable of not only detecting suspicious lung nodules in different imaging modalities—such as chest X-rays, computed tomography (CT), and positron emission tomography (PET) scans—but also discriminating between benign and malignant nodules as well, with success rates comparable to or even better than those of experienced radiologists. Furthermore, AI seems to be able to recognize biomarkers that appear in patients who may develop lung cancer, even years before this event. Moreover, it can also assist pathologists and cytologists in recognizing the type of lung tumor, as well as specific histologic or genetic markers that play a key role in treating the disease. Finally, in the treatment field, AI can guide in the development of personalized options for lung cancer patients, possibly improving their prognosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Shadow发布了新的文献求助10
1秒前
2秒前
2秒前
唠叨的曼易完成签到,获得积分10
3秒前
jianhua完成签到,获得积分10
3秒前
眼睛大的冰岚完成签到,获得积分10
3秒前
4秒前
艺阳完成签到,获得积分10
4秒前
xiaoguang完成签到,获得积分10
4秒前
shaojing完成签到,获得积分20
4秒前
华仔应助吴小根采纳,获得10
4秒前
XJTU_jyh完成签到,获得积分10
5秒前
Asxx发布了新的文献求助10
5秒前
灯座发布了新的文献求助10
5秒前
郭先生发布了新的文献求助10
5秒前
6秒前
超级月光发布了新的文献求助10
6秒前
6秒前
Tonson完成签到,获得积分10
6秒前
cccccttt发布了新的文献求助10
6秒前
7秒前
胡一一完成签到,获得积分20
7秒前
liwenhao应助烽火残心采纳,获得10
7秒前
7秒前
7秒前
少年应助周旭采纳,获得10
8秒前
8秒前
去码头整点薯条完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
shaojing发布了新的文献求助10
8秒前
笑点低代萱完成签到,获得积分10
9秒前
科目三应助11采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
ZhijunXiang完成签到,获得积分10
9秒前
corazon完成签到 ,获得积分10
9秒前
10秒前
10秒前
斯文败类应助武明进采纳,获得10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699262
求助须知:如何正确求助?哪些是违规求助? 5129994
关于积分的说明 15225198
捐赠科研通 4854268
什么是DOI,文献DOI怎么找? 2604550
邀请新用户注册赠送积分活动 1556014
关于科研通互助平台的介绍 1514297