A hybrid deep learning model approach for automated detection and classification of cassava leaf diseases

人工智能 深度学习 计算机科学 机器学习 计算生物学 生物
作者
G. Sambasivam,G. Prabu Kanna,Munesh Singh Chauhan,P. M. Siva Raja,Yogesh Kumar
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:15 (1)
标识
DOI:10.1038/s41598-025-90646-4
摘要

Detecting cassava leaf disease is challenging because it is hard to identify diseases accurately through visual inspection. Even trained agricultural experts may struggle to diagnose the disease correctly which leads to potential misjudgements. Traditional methods to diagnose these diseases are time-consuming, prone to error, and require expert knowledge, making automated solutions highly preferred. This paper explores the application of advanced deep learning techniques to detect as well as classify cassava leaf diseases which includes EfficientNet models, DenseNet169, Xception, MobileNetV2, ResNet models, Vgg19, InceptionV3, and InceptionResNetV2. A dataset consisting of around 36,000 labelled images of cassava leaves, afflicted by diseases such as Cassava Brown Streak Disease, Cassava Mosaic Disease, Cassava Green Mottle, Cassava Bacterial Blight, and healthy leaves, was used to train these models. Further the images were pre-processed by converting them into grayscale, reducing noise using Gaussian filter, obtaining the region of interest using Otsu binarization, Distance transformation, as well as Watershed technique followed by employing contour-based feature selection to enhance model performance. Models, after fine-tuned with ADAM optimizer computed that among the tested models, the hybrid model (DenseNet169 + EfficientNetB0) had superior performance with classification accuracy of 89.94% while as EfficientNetB0 had the highest values of precision, recall, and F1score with 0.78 each. The novelty of the hybrid model lies in its ability to combine DenseNet169's feature reuse capability with EfficientNetB0's computational efficiency, resulting in improved accuracy and scalability. These results highlight the potential of deep learning for accurate and scalable cassava leaf disease diagnosis, laying the foundation for automated plant disease monitoring systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
华仔应助xuanhui采纳,获得10
1秒前
朱朱完成签到,获得积分10
1秒前
长岁完成签到 ,获得积分10
1秒前
wsw关注了科研通微信公众号
1秒前
2秒前
ZhaoY发布了新的文献求助10
2秒前
个性擎发布了新的文献求助10
2秒前
星辰大海应助意而往南飞采纳,获得10
3秒前
Cheney完成签到,获得积分10
3秒前
LG发布了新的文献求助10
3秒前
微笑正豪完成签到,获得积分10
4秒前
lhx完成签到,获得积分10
4秒前
4秒前
反方向的枫完成签到,获得积分10
5秒前
无限老三完成签到,获得积分10
5秒前
小蓝完成签到,获得积分10
5秒前
昏睡的蟠桃应助NaCe1采纳,获得30
6秒前
烟花应助jiojio采纳,获得10
6秒前
咯咚完成签到 ,获得积分10
6秒前
默默的彩虹完成签到,获得积分10
7秒前
Eric完成签到,获得积分10
8秒前
9秒前
三七完成签到,获得积分10
9秒前
星辰大海应助泰裤辣采纳,获得10
9秒前
寒冷的帆布鞋完成签到,获得积分20
10秒前
雪妮儿完成签到,获得积分10
10秒前
10秒前
伟大人物发布了新的文献求助10
11秒前
我是老大应助小白采纳,获得10
11秒前
吹梦到西洲完成签到,获得积分10
11秒前
11秒前
昏睡的蟠桃应助阿敬采纳,获得30
11秒前
BINBIN发布了新的文献求助10
11秒前
YifanWang应助端庄的火龙果采纳,获得20
11秒前
11秒前
华仔应助抚戈采纳,获得10
12秒前
华鹊鹊完成签到,获得积分10
13秒前
科研通AI5应助fannyeast采纳,获得10
13秒前
14秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
Not Equal : Towards an International Law of Finance 260
Oribatid mites in Burmese amber I. First record of the family Achipteriidae (Acariformes, Oribatida) in Cretaceous amber, with the description of a new species of Cerachipteria Grandjean, 1935 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725821
求助须知:如何正确求助?哪些是违规求助? 3270855
关于积分的说明 9969218
捐赠科研通 2986238
什么是DOI,文献DOI怎么找? 1638149
邀请新用户注册赠送积分活动 777978
科研通“疑难数据库(出版商)”最低求助积分说明 747365