Radiotherapy dose prediction using off‐the‐shelf segmentation networks: A feasibility study with GammaPod planning

计算机科学 放射治疗计划 分割 卷积神经网络 人工智能 深度学习 放射治疗 机器学习 医学 放射科
作者
Qingying Wang,Mingli Chen,Mahdieh Kazemimoghadam,Zi Jiang Yang,Kangning Zhang,Xuejun Gu,Weiguo Lu
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17711
摘要

Radiotherapy requires precise, patient-specific treatment planning to achieve high-quality dose distributions that improve patient outcomes. Traditional manual planning is time-consuming and clinically impractical for performing necessary plan trade-off comparisons, including treatment modality selection, prescription dose settings, and organ at risk (OAR) constraints. A time-efficient dose prediction tool could accelerate the planning process by guiding clinical plan optimization and adjustments. While the deep convolutional neural networks (CNNs) are prominent in radiotherapy dose prediction tasks, most studies have attempted to customize network architectures for different diseases and treatment modalities. This study proposes a universal and efficient strategy, Seg2Dose, leveraging a state-of-the-art segmentation network for radiotherapy dose prediction without the need for model architecture modifications. We aim to provide a convenient off-the-shelf dose prediction tool that simplifies the dose prediction process, enhancing planning speed, and plan quality while minimizing the need for extensive coding and customization. The proposed Seg2Dose consists of three modules: the Adapter, the segmentation network, and the Smoother. Prior to model training, the Adapter processes dose distributions into dose level map with an adjustable interval, which serves as the ground truth of the segmentation network, and generates two input channels: weighted avoidance image and normalized prescribed dose image. The segmentation network predicts dose levels from input channels using the nnU-Net, which was trained, validated and tested on 304, 77, and 64 breast cancer GammaPod treatment plans from 90 patients. The Smoother converts the predicted dose levels into continuous dose distribution with a Gaussian filter. The performance of Seg2Dose models with two different dose level intervals, 2% (Seg2Dose 2%) and 5% (Seg2Dose 5%), was evaluated by the Dice similarity coefficients (DSCs), voxel-based mean absolute percent error (MAPE), dose-volume histogram (DVH) metrics, global 3%/2 mm and 3%/1 mm gamma passing rate (GPR), and a case study including normal and worst cases. Additionally, Seg2Dose was compared with an exciting cutting-edge Cascade 3D (C3D) dose prediction model, which was trained on continuous dose distributions, to investigate the impact of using dose level map. For dose level prediction, Seg2Dose achieved average DSCs of 0.94 and 0.93 for the 2% and 5% intervals, respectively. For dose distribution prediction, both Seg2Dose 2% and Seg2Dose 5% achieved MAPEs within 6% for targets and most OARs, with the exception of the skin, which had the highest MAPE at 8.58% for Seg2Dose 2% and 15.25% for Seg2Dose 5%. The DVH metrics showed consistent findings. The C3D model has a better performance in GPR than Seg2Dose models. However, the C3D model exhibited higher MAPEs in target areas with lower dose predictions. In the case study, Seg2Dose 2% and C3D predictions were more consistent with clinical plans, showing smaller dose differences compared to Seg2Dose 5%. Our study confirms the feasibility of leveraging the segmentation network for dose prediction and provides an efficient and off-the-shelf approach for dose prediction without requiring extensive coding efforts. This plug-in tool holds promise for quick dose planning, potentially aiding in the identification of optimal radiotherapy techniques and dosimetric tradeoffs prior to tedious treatment planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加菲丰丰应助111采纳,获得10
刚刚
1秒前
孙成成完成签到 ,获得积分10
1秒前
月光入梦完成签到 ,获得积分10
3秒前
3秒前
4秒前
007完成签到 ,获得积分10
6秒前
Hello应助MM采纳,获得10
7秒前
7秒前
天天完成签到 ,获得积分10
8秒前
8秒前
韩凡发布了新的文献求助10
10秒前
希望天下0贩的0应助KaK采纳,获得10
11秒前
dudu10000完成签到,获得积分10
11秒前
太空工程师完成签到,获得积分10
11秒前
13秒前
小静静发布了新的文献求助10
13秒前
香蕉觅云应助zxy采纳,获得30
14秒前
15秒前
16秒前
情怀应助Juan采纳,获得10
17秒前
17秒前
俏皮白云完成签到 ,获得积分10
18秒前
Captain完成签到 ,获得积分10
20秒前
受伤凌蝶发布了新的文献求助10
21秒前
yyyy发布了新的文献求助10
21秒前
长情的小鸽子完成签到,获得积分10
24秒前
26秒前
科研通AI5应助王大人很白采纳,获得10
26秒前
受伤凌蝶完成签到,获得积分10
27秒前
29秒前
31秒前
小静静完成签到,获得积分10
31秒前
MM完成签到,获得积分10
31秒前
elivsZhou完成签到,获得积分10
33秒前
Juan发布了新的文献求助10
35秒前
lalaland完成签到,获得积分10
35秒前
36秒前
sunjiayue1226发布了新的文献求助10
36秒前
bkagyin应助景存采纳,获得30
42秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3675356
求助须知:如何正确求助?哪些是违规求助? 3230248
关于积分的说明 9789187
捐赠科研通 2941036
什么是DOI,文献DOI怎么找? 1612327
邀请新用户注册赠送积分活动 761068
科研通“疑难数据库(出版商)”最低求助积分说明 736602