Abstract 4316: Identification of tertiary lymphoid structures from H&E slides using deep learning analysis of nuclear morphology is associated with favorable survival in colorectal cancer patients

免疫系统 结直肠癌 医学 病理 肿瘤科 癌症研究 癌症 内科学 免疫学
作者
Becky Arbiv,Tal Dankovich,Sun Dagan,Yuval Shachaf,Tomer Dicker,Ron Elran,Avi Laniado,Amit Bart,Ori Zelichov,Ettai Markovits
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:83 (7_Supplement): 4316-4316 被引量:1
标识
DOI:10.1158/1538-7445.am2023-4316
摘要

Abstract Background: Tertiary lymphoid structures (TLS) are organized aggregates of immune cells that develop in non-lymphoid tissues and are associated with better prognosis and immunotherapy response across cancer types. Multiple IHC stainings are required for an accurate detection of TLS, making it challenging to implement as a clinical biomarker. Here, we developed a deep learning (DL) model that extracts nuclear morphology features to detect TLS from H&E slides and demonstrated its prognostic role in colorectal cancer (CRC) patients. Methods: A publicly available dataset consisting of 140 tissue cores from 35 CRC pts stained with H&E and 56 protein markers using the CODEX multiplex immunofluorescence (mIF) system was analyzed. Immune cell aggregates on the H&E were annotated by expert pathologists as either TLS or lymphocyte aggregates (LA), based on marker expression from the mIF stain on the same core. TLS were defined as dense aggregates of CD3+/CD20+/CD21+ cells, while all other immune cell aggregates were defined as LA. Next, HoVerNet was used to perform nuclear segmentation on cells within the TLS and LA on the H&E. Nuclear features including eccentricity, solidity, convexity, and nuclear intensity per cell were extracted and the mean and variance of each feature was summarized per tissue core. Based on these features, a univariate analysis comparing TLS and LA was performed, and a TLS classifier was trained using multivariate logistic regression. The classifier performance was assessed using 5 repeats of 5-fold cross validation and average accuracy and area under the ROC curve (AUC) were calculated. Overall survival (OS) was compared between patients with predicted TLS and LA using a Cox proportional hazard regression analysis. Results: From the 140 tissue cores, we identified cores with either TLS (n=18), LA (n=34) or none (n=92). No core presented both TLS and LA. In a Mann Whitney univariate analysis, cells in TLS areas demonstrated a higher mean nuclear eccentricity (p<0.0001) and solidity (p=0.01) along with lower variance in these features (p<0.0001 and p=0.001, respectively) compared to cells in LA. The multivariate classifier trained on nuclear features exhibited a 90.4% average accuracy (p<0.0001) and 94% AUC (p<0.0001) in differentiating between TLS and LA. Median OS was significantly higher in patients with at least one predicted TLS (n=13) vs. patients with at least one predicted LA (n=13) detected on H&E (NR vs. 19 months, HR=0.21, 95% CI 0.06-0.78; p=0.01). Conclusions: Nuclear based morphological features can be used to accurately detect the presence of TLS and LA from H&E slides, without the need for mIF or IHC stainings. Given the predictive value of TLS presence, this work demonstrates the potential for H&E slides to be used for patient selection for immunotherapy treatments. Citation Format: Becky Arbiv, Tal Dankovich, Sun Dagan, Yuval Shachaf, Tomer Dicker, Ron Elran, Avi Laniado, Amit Bart, Ori Zelichov, Ettai Markovits. Identification of tertiary lymphoid structures from H&E slides using deep learning analysis of nuclear morphology is associated with favorable survival in colorectal cancer patients. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 4316.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
要减肥完成签到,获得积分10
1秒前
茵垂丝丁完成签到,获得积分20
2秒前
吴谷杂粮发布了新的文献求助10
2秒前
Miso发布了新的文献求助10
3秒前
科研通AI5应助初夏采纳,获得10
3秒前
研友_38K3A8发布了新的文献求助10
4秒前
香蕉觅云应助WQY采纳,获得10
5秒前
Ava应助飘逸鞋子采纳,获得10
7秒前
7秒前
Hello应助淡淡念桃采纳,获得10
7秒前
余生完成签到,获得积分10
8秒前
Xiaoxiao应助传统的太清采纳,获得10
9秒前
祺志鲜明完成签到,获得积分10
10秒前
10秒前
科研通AI5应助小郭采纳,获得10
11秒前
酷酷剑通发布了新的文献求助10
12秒前
上官若男应助简一采纳,获得10
13秒前
无花果应助shalala采纳,获得10
14秒前
GalaxyKe发布了新的文献求助10
16秒前
不秃的卤蛋完成签到,获得积分10
16秒前
852应助酷酷剑通采纳,获得10
18秒前
20秒前
ccrr完成签到 ,获得积分10
20秒前
20秒前
21秒前
23秒前
小郭发布了新的文献求助10
24秒前
25秒前
25秒前
贝涛发布了新的文献求助10
30秒前
所所应助科研小菜鸡采纳,获得10
30秒前
复原乳完成签到,获得积分10
30秒前
初夏发布了新的文献求助10
32秒前
34秒前
传奇3应助88C真是太神奇啦采纳,获得10
34秒前
在水一方应助茵垂丝丁采纳,获得10
35秒前
ANG完成签到 ,获得积分10
36秒前
pluto应助mmyhn采纳,获得10
39秒前
XxxxxxG发布了新的文献求助10
40秒前
40秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670705
求助须知:如何正确求助?哪些是违规求助? 3227648
关于积分的说明 9776557
捐赠科研通 2937823
什么是DOI,文献DOI怎么找? 1609637
邀请新用户注册赠送积分活动 760441
科研通“疑难数据库(出版商)”最低求助积分说明 735874