Prognostic Value of Radiomics Analysis of Skeletal Muscle After Radical Irradiation of Esophageal Cancer

医学 食管癌 肌萎缩 列线图 无线电技术 放射治疗 放射科 癌症 骨骼肌 核医学 内科学
作者
Kazuma Iwashita,Hikaru Kubota,Riku Nishioka,Yukio Emoto,Daisuke Kawahara,Takeshi Ishihara,Daisuke Miyawaki,Ikuno Nishibuchi,Yasushi Nagata,Ryohei Sasaki
出处
期刊:Anticancer Research [Anticancer Research USA Inc.]
卷期号:43 (4): 1749-1760 被引量:5
标识
DOI:10.21873/anticanres.16328
摘要

Background/Aim: Sarcopenia is an independent survival predictor in several tumor types. Computed tomography (CT) is the standard measurement for body composition assessment. Radiomics analysis of CT images allows for the precise evaluation of skeletal muscles. This study aimed to construct a prognostic survival model for patients with esophageal cancer who underwent radical irradiation using skeletal muscle radiomics. Patients and Methods: We retrospectively identified patients with esophageal cancer who underwent radical irradiation at our institution between April 2008 and December 2017. Skeletal muscle radiomics were extracted from an axial pretreatment CT at the third lumbar vertebral level. The prediction model was constructed using machine learning coupled with the least absolute shrinkage and selection operator (LASSO). The predictive nomogram model comprised clinical factors with radiomic features. Three prediction models were created: clinical, radiomics, and combined. Results: Ninety-eight patients with 98 esophageal cancers were enrolled in this study. The median observation period was 57.5 months (range=1-98 months). Thirty-five radiomics features were selected by LASSO analysis, and a prediction model was constructed using training and validation data. The average of the accuracy, specificity, sensitivity, and area under the concentration-time curve for predicting survival in esophageal cancer in the combined model were 75%, 92%, and 0.86, respectively. The C-indices of the clinical, radiomics, and combined models were 0.76, 0.80, and 0.88, respectively. Conclusion: A prediction model with skeletal muscle radiomics and clinical data might help determine survival outcomes in patients with esophageal cancer treated with radical radiotherapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助科研通管家采纳,获得10
刚刚
尊敬帅哥应助科研通管家采纳,获得10
刚刚
玄风应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
核桃应助科研通管家采纳,获得30
刚刚
希望天下0贩的0应助千凡采纳,获得10
刚刚
SciGPT应助千凡采纳,获得10
刚刚
ww完成签到 ,获得积分10
1秒前
CodeCraft应助可爱半凡采纳,获得10
2秒前
最好的小刘同学完成签到,获得积分20
3秒前
量子星尘发布了新的文献求助10
4秒前
称心的新之完成签到,获得积分10
4秒前
Akim应助fxx采纳,获得10
5秒前
6秒前
7秒前
华仔应助整齐的傲之采纳,获得10
8秒前
10秒前
笑点低的凝安完成签到,获得积分10
10秒前
10秒前
佩琪完成签到,获得积分10
12秒前
JHL发布了新的文献求助10
12秒前
12秒前
高血压发布了新的文献求助10
12秒前
侯zijun完成签到,获得积分20
12秒前
12秒前
一向年光无限身完成签到,获得积分10
13秒前
陈沙发布了新的文献求助30
13秒前
14秒前
大气如雪完成签到,获得积分10
14秒前
15秒前
CodeCraft应助千凡采纳,获得10
16秒前
天天快乐应助苏休夫采纳,获得10
16秒前
16秒前
鸣鸣完成签到,获得积分10
17秒前
17秒前
研友_VZG7GZ应助嗯嗯哈哈采纳,获得10
18秒前
高贵紫丝发布了新的文献求助10
18秒前
18秒前
量子星尘发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618419
求助须知:如何正确求助?哪些是违规求助? 4703323
关于积分的说明 14922057
捐赠科研通 4757439
什么是DOI,文献DOI怎么找? 2550076
邀请新用户注册赠送积分活动 1512904
关于科研通互助平台的介绍 1474299