Prognostic Value of Radiomics Analysis of Skeletal Muscle After Radical Irradiation of Esophageal Cancer

医学 食管癌 肌萎缩 列线图 无线电技术 放射治疗 放射科 癌症 骨骼肌 核医学 内科学
作者
Kazuma Iwashita,Hikaru Kubota,Riku Nishioka,Yukio Emoto,Daisuke Kawahara,Takeshi Ishihara,Daisuke Miyawaki,Ikuno Nishibuchi,Yasushi Nagata,Ryohei Sasaki
出处
期刊:Anticancer Research [Anticancer Research USA Inc.]
卷期号:43 (4): 1749-1760 被引量:5
标识
DOI:10.21873/anticanres.16328
摘要

Background/Aim: Sarcopenia is an independent survival predictor in several tumor types. Computed tomography (CT) is the standard measurement for body composition assessment. Radiomics analysis of CT images allows for the precise evaluation of skeletal muscles. This study aimed to construct a prognostic survival model for patients with esophageal cancer who underwent radical irradiation using skeletal muscle radiomics. Patients and Methods: We retrospectively identified patients with esophageal cancer who underwent radical irradiation at our institution between April 2008 and December 2017. Skeletal muscle radiomics were extracted from an axial pretreatment CT at the third lumbar vertebral level. The prediction model was constructed using machine learning coupled with the least absolute shrinkage and selection operator (LASSO). The predictive nomogram model comprised clinical factors with radiomic features. Three prediction models were created: clinical, radiomics, and combined. Results: Ninety-eight patients with 98 esophageal cancers were enrolled in this study. The median observation period was 57.5 months (range=1-98 months). Thirty-five radiomics features were selected by LASSO analysis, and a prediction model was constructed using training and validation data. The average of the accuracy, specificity, sensitivity, and area under the concentration-time curve for predicting survival in esophageal cancer in the combined model were 75%, 92%, and 0.86, respectively. The C-indices of the clinical, radiomics, and combined models were 0.76, 0.80, and 0.88, respectively. Conclusion: A prediction model with skeletal muscle radiomics and clinical data might help determine survival outcomes in patients with esophageal cancer treated with radical radiotherapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助怡然羊采纳,获得10
1秒前
2秒前
2秒前
九幺完成签到 ,获得积分10
2秒前
两块钱打工人完成签到,获得积分10
3秒前
某只橘猫君完成签到,获得积分10
4秒前
4秒前
NexusExplorer应助雪糕采纳,获得10
5秒前
5秒前
5秒前
zhengyue2233完成签到,获得积分10
5秒前
jacky_cjc1完成签到 ,获得积分10
5秒前
南枳完成签到 ,获得积分10
6秒前
will驳回了传奇3应助
6秒前
6秒前
科研通AI2S应助zhoujiaxu采纳,获得10
6秒前
7秒前
畅快的文龙完成签到,获得积分10
8秒前
LEGEND完成签到,获得积分10
9秒前
爱吃草莓和菠萝的吕可爱完成签到,获得积分10
9秒前
汉堡包应助childe采纳,获得10
9秒前
寒梅恋雪完成签到 ,获得积分10
10秒前
fgd发布了新的文献求助10
10秒前
超级的鹅完成签到,获得积分10
11秒前
12秒前
liuliuda完成签到 ,获得积分10
12秒前
12秒前
田様应助洛luo采纳,获得10
13秒前
逆流而上发布了新的文献求助10
13秒前
宋文祥发布了新的文献求助10
13秒前
黄健丰发布了新的文献求助10
14秒前
深情安青应助科研小秦采纳,获得10
16秒前
serendipity发布了新的文献求助10
17秒前
JThuo完成签到,获得积分10
18秒前
踏实的白羊完成签到,获得积分10
18秒前
穆梦山完成签到,获得积分10
19秒前
姜明哲完成签到 ,获得积分10
19秒前
make217完成签到 ,获得积分10
20秒前
清风完成签到 ,获得积分10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603615
求助须知:如何正确求助?哪些是违规求助? 4688619
关于积分的说明 14855047
捐赠科研通 4694226
什么是DOI,文献DOI怎么找? 2540896
邀请新用户注册赠送积分活动 1507124
关于科研通互助平台的介绍 1471806