Prognostic Value of Radiomics Analysis of Skeletal Muscle After Radical Irradiation of Esophageal Cancer

医学 食管癌 肌萎缩 列线图 无线电技术 放射治疗 放射科 癌症 骨骼肌 核医学 内科学
作者
Kazuma Iwashita,Hikaru Kubota,Riku Nishioka,Yukio Emoto,Daisuke Kawahara,Takeshi Ishihara,Daisuke Miyawaki,Ikuno Nishibuchi,Yasushi Nagata,Ryohei Sasaki
出处
期刊:Anticancer Research [Anticancer Research USA Inc.]
卷期号:43 (4): 1749-1760 被引量:5
标识
DOI:10.21873/anticanres.16328
摘要

Background/Aim: Sarcopenia is an independent survival predictor in several tumor types. Computed tomography (CT) is the standard measurement for body composition assessment. Radiomics analysis of CT images allows for the precise evaluation of skeletal muscles. This study aimed to construct a prognostic survival model for patients with esophageal cancer who underwent radical irradiation using skeletal muscle radiomics. Patients and Methods: We retrospectively identified patients with esophageal cancer who underwent radical irradiation at our institution between April 2008 and December 2017. Skeletal muscle radiomics were extracted from an axial pretreatment CT at the third lumbar vertebral level. The prediction model was constructed using machine learning coupled with the least absolute shrinkage and selection operator (LASSO). The predictive nomogram model comprised clinical factors with radiomic features. Three prediction models were created: clinical, radiomics, and combined. Results: Ninety-eight patients with 98 esophageal cancers were enrolled in this study. The median observation period was 57.5 months (range=1-98 months). Thirty-five radiomics features were selected by LASSO analysis, and a prediction model was constructed using training and validation data. The average of the accuracy, specificity, sensitivity, and area under the concentration-time curve for predicting survival in esophageal cancer in the combined model were 75%, 92%, and 0.86, respectively. The C-indices of the clinical, radiomics, and combined models were 0.76, 0.80, and 0.88, respectively. Conclusion: A prediction model with skeletal muscle radiomics and clinical data might help determine survival outcomes in patients with esophageal cancer treated with radical radiotherapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
3秒前
CA发布了新的文献求助10
3秒前
哆来咪发布了新的文献求助20
3秒前
无花果应助syy080837采纳,获得10
4秒前
4秒前
草中有粑粑完成签到,获得积分10
4秒前
白子双发布了新的文献求助10
4秒前
7秒前
8秒前
9秒前
coffee发布了新的文献求助10
9秒前
11秒前
诸葛语琴完成签到,获得积分10
12秒前
12121发布了新的文献求助10
14秒前
Kenny发布了新的文献求助10
15秒前
syy080837发布了新的文献求助10
17秒前
星辰大海应助埃森采纳,获得10
21秒前
Kenny完成签到,获得积分10
23秒前
学术混子雷雷雷雷雷完成签到,获得积分10
26秒前
huang完成签到,获得积分10
27秒前
31秒前
往事不可挽回完成签到 ,获得积分10
33秒前
王英俊完成签到,获得积分10
35秒前
小马甲应助GongSyi采纳,获得10
37秒前
梧桐发布了新的文献求助10
37秒前
土豆丝关注了科研通微信公众号
39秒前
syy080837完成签到,获得积分10
41秒前
wxyshare举报小巧初露求助涉嫌违规
42秒前
天天快乐应助科研通管家采纳,获得10
42秒前
浮游应助科研通管家采纳,获得10
42秒前
浮游应助科研通管家采纳,获得10
42秒前
孙_boss完成签到 ,获得积分10
42秒前
Mic应助科研通管家采纳,获得10
42秒前
42秒前
浮游应助科研通管家采纳,获得10
43秒前
李健应助科研通管家采纳,获得10
43秒前
科研通AI6应助科研通管家采纳,获得10
43秒前
Mic应助科研通管家采纳,获得10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560249
求助须知:如何正确求助?哪些是违规求助? 4645431
关于积分的说明 14675179
捐赠科研通 4586582
什么是DOI,文献DOI怎么找? 2516468
邀请新用户注册赠送积分活动 1490105
关于科研通互助平台的介绍 1460915