Prognostic Value of Radiomics Analysis of Skeletal Muscle After Radical Irradiation of Esophageal Cancer

医学 食管癌 肌萎缩 列线图 无线电技术 放射治疗 放射科 癌症 骨骼肌 核医学 内科学
作者
Kazuma Iwashita,Hikaru Kubota,Riku Nishioka,Yukio Emoto,Daisuke Kawahara,Takeshi Ishihara,Daisuke Miyawaki,Ikuno Nishibuchi,Yasushi Nagata,Ryohei Sasaki
出处
期刊:Anticancer Research [Anticancer Research USA Inc.]
卷期号:43 (4): 1749-1760 被引量:5
标识
DOI:10.21873/anticanres.16328
摘要

Background/Aim: Sarcopenia is an independent survival predictor in several tumor types. Computed tomography (CT) is the standard measurement for body composition assessment. Radiomics analysis of CT images allows for the precise evaluation of skeletal muscles. This study aimed to construct a prognostic survival model for patients with esophageal cancer who underwent radical irradiation using skeletal muscle radiomics. Patients and Methods: We retrospectively identified patients with esophageal cancer who underwent radical irradiation at our institution between April 2008 and December 2017. Skeletal muscle radiomics were extracted from an axial pretreatment CT at the third lumbar vertebral level. The prediction model was constructed using machine learning coupled with the least absolute shrinkage and selection operator (LASSO). The predictive nomogram model comprised clinical factors with radiomic features. Three prediction models were created: clinical, radiomics, and combined. Results: Ninety-eight patients with 98 esophageal cancers were enrolled in this study. The median observation period was 57.5 months (range=1-98 months). Thirty-five radiomics features were selected by LASSO analysis, and a prediction model was constructed using training and validation data. The average of the accuracy, specificity, sensitivity, and area under the concentration-time curve for predicting survival in esophageal cancer in the combined model were 75%, 92%, and 0.86, respectively. The C-indices of the clinical, radiomics, and combined models were 0.76, 0.80, and 0.88, respectively. Conclusion: A prediction model with skeletal muscle radiomics and clinical data might help determine survival outcomes in patients with esophageal cancer treated with radical radiotherapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晓柒nc发布了新的文献求助30
1秒前
LS-GENIUS完成签到,获得积分10
4秒前
咸鱼发布了新的文献求助10
5秒前
一袁完成签到 ,获得积分10
5秒前
核桃发布了新的文献求助30
7秒前
Owen应助称心水池采纳,获得30
8秒前
8秒前
10秒前
生动娩发布了新的文献求助10
11秒前
12秒前
12秒前
bean完成签到 ,获得积分10
15秒前
16秒前
现代姒发布了新的文献求助10
16秒前
小马甲应助ltt采纳,获得10
16秒前
毛毛完成签到,获得积分10
17秒前
愿qbj发布了新的文献求助10
18秒前
18秒前
18秒前
18秒前
20秒前
瘦瘦鸵鸟发布了新的文献求助10
22秒前
23秒前
23秒前
智者发布了新的文献求助10
24秒前
blue完成签到,获得积分10
24秒前
LYY关注了科研通微信公众号
24秒前
wanci应助小rao采纳,获得10
25秒前
板凳发布了新的文献求助10
25秒前
28秒前
愿qbj完成签到,获得积分10
28秒前
生动娩发布了新的文献求助10
29秒前
ohh发布了新的文献求助10
30秒前
量子星尘发布了新的文献求助10
31秒前
着急的青枫应助Ryy采纳,获得10
31秒前
俏皮短靴发布了新的文献求助20
32秒前
勤勤完成签到 ,获得积分10
35秒前
七木完成签到,获得积分10
35秒前
36秒前
唐静发布了新的文献求助10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599407
求助须知:如何正确求助?哪些是违规求助? 4685010
关于积分的说明 14837502
捐赠科研通 4668037
什么是DOI,文献DOI怎么找? 2537906
邀请新用户注册赠送积分活动 1505398
关于科研通互助平台的介绍 1470783