亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prognostic Value of Radiomics Analysis of Skeletal Muscle After Radical Irradiation of Esophageal Cancer

医学 食管癌 肌萎缩 列线图 无线电技术 放射治疗 放射科 癌症 骨骼肌 核医学 内科学
作者
Kazuma Iwashita,Hikaru Kubota,Riku Nishioka,Yukio Emoto,Daisuke Kawahara,Takeshi Ishihara,Daisuke Miyawaki,Ikuno Nishibuchi,Yasushi Nagata,Ryohei Sasaki
出处
期刊:Anticancer Research [International Institute of Anticancer Research (IIAR) Conferences 1997. Athens, Greece. Abstracts]
卷期号:43 (4): 1749-1760 被引量:5
标识
DOI:10.21873/anticanres.16328
摘要

Background/Aim: Sarcopenia is an independent survival predictor in several tumor types. Computed tomography (CT) is the standard measurement for body composition assessment. Radiomics analysis of CT images allows for the precise evaluation of skeletal muscles. This study aimed to construct a prognostic survival model for patients with esophageal cancer who underwent radical irradiation using skeletal muscle radiomics. Patients and Methods: We retrospectively identified patients with esophageal cancer who underwent radical irradiation at our institution between April 2008 and December 2017. Skeletal muscle radiomics were extracted from an axial pretreatment CT at the third lumbar vertebral level. The prediction model was constructed using machine learning coupled with the least absolute shrinkage and selection operator (LASSO). The predictive nomogram model comprised clinical factors with radiomic features. Three prediction models were created: clinical, radiomics, and combined. Results: Ninety-eight patients with 98 esophageal cancers were enrolled in this study. The median observation period was 57.5 months (range=1-98 months). Thirty-five radiomics features were selected by LASSO analysis, and a prediction model was constructed using training and validation data. The average of the accuracy, specificity, sensitivity, and area under the concentration-time curve for predicting survival in esophageal cancer in the combined model were 75%, 92%, and 0.86, respectively. The C-indices of the clinical, radiomics, and combined models were 0.76, 0.80, and 0.88, respectively. Conclusion: A prediction model with skeletal muscle radiomics and clinical data might help determine survival outcomes in patients with esophageal cancer treated with radical radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助Tsuzuri采纳,获得30
30秒前
leave完成签到 ,获得积分0
46秒前
GPTea应助科研通管家采纳,获得10
1分钟前
快乐学习每一天完成签到 ,获得积分10
1分钟前
PHI完成签到 ,获得积分10
1分钟前
胖小羊完成签到 ,获得积分10
1分钟前
苗苗完成签到 ,获得积分10
2分钟前
lin123完成签到 ,获得积分10
2分钟前
2分钟前
Tsuzuri发布了新的文献求助30
2分钟前
科研通AI5应助Tsuzuri采纳,获得30
3分钟前
GPTea应助科研通管家采纳,获得10
3分钟前
和风完成签到 ,获得积分10
3分钟前
ppat5012完成签到,获得积分10
3分钟前
开心的西瓜完成签到,获得积分10
4分钟前
沙海沉戈完成签到,获得积分0
4分钟前
狂野的含烟完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
ding应助nns采纳,获得10
4分钟前
vbnn完成签到 ,获得积分10
4分钟前
5分钟前
li199624发布了新的文献求助80
5分钟前
li199624完成签到,获得积分10
5分钟前
馆长应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
馆长应助科研通管家采纳,获得10
5分钟前
馆长应助科研通管家采纳,获得10
5分钟前
石头完成签到,获得积分10
5分钟前
Jessica完成签到,获得积分10
6分钟前
卓天宇完成签到,获得积分10
6分钟前
馆长应助科研通管家采纳,获得10
7分钟前
GPTea应助科研通管家采纳,获得10
7分钟前
馆长应助科研通管家采纳,获得10
7分钟前
馆长应助科研通管家采纳,获得10
7分钟前
GPTea应助科研通管家采纳,获得20
9分钟前
GPTea应助科研通管家采纳,获得20
9分钟前
馆长应助科研通管家采纳,获得10
9分钟前
GPTea应助科研通管家采纳,获得10
9分钟前
GPTea应助科研通管家采纳,获得10
9分钟前
馆长应助科研通管家采纳,获得100
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910293
求助须知:如何正确求助?哪些是违规求助? 4186198
关于积分的说明 12999204
捐赠科研通 3953591
什么是DOI,文献DOI怎么找? 2168003
邀请新用户注册赠送积分活动 1186436
关于科研通互助平台的介绍 1093572