Prognostic Value of Radiomics Analysis of Skeletal Muscle After Radical Irradiation of Esophageal Cancer

医学 食管癌 肌萎缩 列线图 无线电技术 放射治疗 放射科 癌症 骨骼肌 核医学 内科学
作者
Kazuma Iwashita,Hikaru Kubota,Riku Nishioka,Yukio Emoto,Daisuke Kawahara,Takeshi Ishihara,Daisuke Miyawaki,Ikuno Nishibuchi,Yasushi Nagata,Ryohei Sasaki
出处
期刊:Anticancer Research [Anticancer Research USA Inc.]
卷期号:43 (4): 1749-1760 被引量:5
标识
DOI:10.21873/anticanres.16328
摘要

Background/Aim: Sarcopenia is an independent survival predictor in several tumor types. Computed tomography (CT) is the standard measurement for body composition assessment. Radiomics analysis of CT images allows for the precise evaluation of skeletal muscles. This study aimed to construct a prognostic survival model for patients with esophageal cancer who underwent radical irradiation using skeletal muscle radiomics. Patients and Methods: We retrospectively identified patients with esophageal cancer who underwent radical irradiation at our institution between April 2008 and December 2017. Skeletal muscle radiomics were extracted from an axial pretreatment CT at the third lumbar vertebral level. The prediction model was constructed using machine learning coupled with the least absolute shrinkage and selection operator (LASSO). The predictive nomogram model comprised clinical factors with radiomic features. Three prediction models were created: clinical, radiomics, and combined. Results: Ninety-eight patients with 98 esophageal cancers were enrolled in this study. The median observation period was 57.5 months (range=1-98 months). Thirty-five radiomics features were selected by LASSO analysis, and a prediction model was constructed using training and validation data. The average of the accuracy, specificity, sensitivity, and area under the concentration-time curve for predicting survival in esophageal cancer in the combined model were 75%, 92%, and 0.86, respectively. The C-indices of the clinical, radiomics, and combined models were 0.76, 0.80, and 0.88, respectively. Conclusion: A prediction model with skeletal muscle radiomics and clinical data might help determine survival outcomes in patients with esophageal cancer treated with radical radiotherapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐正飞风发布了新的文献求助10
刚刚
先林应助11di采纳,获得10
刚刚
secret完成签到,获得积分10
1秒前
sansan发布了新的文献求助10
2秒前
斯文莺发布了新的文献求助10
2秒前
Reid完成签到 ,获得积分10
2秒前
kmelo发布了新的文献求助10
3秒前
淡然夏天关注了科研通微信公众号
3秒前
科研小呆瓜完成签到,获得积分20
3秒前
4秒前
4秒前
5秒前
5秒前
科研通AI6应助迷人书蝶采纳,获得10
6秒前
李健应助阿雷采纳,获得10
6秒前
科研通AI6应助xixi采纳,获得10
7秒前
linlinyilulvdeng完成签到,获得积分10
7秒前
科研通AI2S应助尹辉采纳,获得10
7秒前
爱听歌老1完成签到,获得积分10
7秒前
8秒前
沈若南应助灯灯采纳,获得10
8秒前
9秒前
9秒前
9秒前
111发布了新的文献求助10
9秒前
9秒前
9秒前
谨慎的灵完成签到 ,获得积分20
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
勇敢牛牛发布了新的文献求助10
11秒前
11秒前
乐正飞风完成签到,获得积分20
12秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660809
求助须知:如何正确求助?哪些是违规求助? 4835652
关于积分的说明 15091990
捐赠科研通 4819406
什么是DOI,文献DOI怎么找? 2579257
邀请新用户注册赠送积分活动 1533773
关于科研通互助平台的介绍 1492565