Aerodynamic optimization of airfoil based on deep reinforcement learning

翼型 强化学习 Lift(数据挖掘) 空气动力学 计算机科学 升阻比 阻力 人工智能 数学优化 航空航天工程 机器学习 工程类 数学
作者
Jinhua Lou,Rongqian Chen,Jiaqi Liu,Yue Bao,Yancheng You,Zhengwu Chen
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (3) 被引量:11
标识
DOI:10.1063/5.0137002
摘要

The traditional optimization of airfoils relies on, and is limited by, the knowledge and experience of the designer. As a method of intelligent decision-making, reinforcement learning can be used for such optimization through self-directed learning. In this paper, we use the lift–drag ratio as the objective of optimization to propose a method for the aerodynamic optimization of airfoils based on a combination of deep learning and reinforcement learning. A deep neural network (DNN) is first constructed as a surrogate model to quickly predict the lift–drag ratio of the airfoil, and a double deep Q-network (double DQN) algorithm is then designed based on deep reinforcement learning to train the optimization policy. During the training phase, the agent uses geometric parameters of the airfoil to represent its state, adopts a stochastic policy to generate optimization experience, and uses a deterministic policy to modify the geometry of the airfoil. The DNN calculates changes in the lift–drag ratio of the airfoil as a reward, and the environment constantly feeds the states, actions, and rewards back to the agent, which dynamically updates the policy to retain positive optimization experience. The results of simulations show that the double DQN can learn the general policy for optimizing the airfoil to improve its lift–drag ratio to 71.46%. The optimization policy can be generalized to a variety of computational conditions. Therefore, the proposed method can rapidly predict the aerodynamic parameters of the airfoil and autonomously learn the optimization policy to render the entire process intelligent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
所所应助奔塔尼采纳,获得10
2秒前
斯文败类应助Pepsi采纳,获得10
2秒前
jiujiujiujiu完成签到,获得积分10
2秒前
3秒前
5秒前
6秒前
6秒前
贪玩丸子完成签到,获得积分10
8秒前
10秒前
小宋发布了新的文献求助10
11秒前
失眠的浩然完成签到,获得积分10
11秒前
还好完成签到,获得积分10
11秒前
sirhai发布了新的文献求助10
12秒前
震震发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
14秒前
pny发布了新的文献求助10
16秒前
17秒前
18秒前
Amie发布了新的文献求助10
18秒前
奔塔尼发布了新的文献求助10
20秒前
20秒前
20秒前
浅梨涡完成签到 ,获得积分10
21秒前
震震完成签到,获得积分10
21秒前
邢慧兰完成签到,获得积分10
22秒前
22秒前
kingwill应助白芽采纳,获得20
23秒前
24秒前
AprilLeung完成签到 ,获得积分10
25秒前
Zoe完成签到,获得积分10
25秒前
pny发布了新的文献求助10
25秒前
搜集达人应助小宋采纳,获得10
26秒前
共享精神应助安静的静槐采纳,获得10
26秒前
小迪真傻发布了新的文献求助10
26秒前
坚强的广山给yueyue的求助进行了留言
27秒前
真实的芹完成签到,获得积分10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
On the identity and nomenclature of a climbing bamboo Melocalamus macclellandii 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3557572
求助须知:如何正确求助?哪些是违规求助? 3132664
关于积分的说明 9398623
捐赠科研通 2832834
什么是DOI,文献DOI怎么找? 1557063
邀请新用户注册赠送积分活动 727072
科研通“疑难数据库(出版商)”最低求助积分说明 716184