Signal propagation in complex networks

物理 网络拓扑 人工智能 复杂网络 非线性系统 封面(代数) 人工神经网络 信号(编程语言) 不断发展的网络 网络科学 信号处理 数据科学 机器学习 拓扑(电路) 电信 计算机网络 万维网 计算机科学 工程类 组合数学 程序设计语言 数学 雷达 机械工程 量子力学
作者
Peng Ji,Jiachen Ye,Yu Mu,Wei Lin,Yang Tian,Chittaranjan Hens,Matjaž Perc,Yang Tang,Jie Sun,Jürgen Kurths
出处
期刊:Physics Reports [Elsevier]
卷期号:1017: 1-96 被引量:282
标识
DOI:10.1016/j.physrep.2023.03.005
摘要

Signal propagation in complex networks drives epidemics, is responsible for information going viral, promotes trust and facilitates moral behavior in social groups, enables the development of misinformation detection algorithms, and it is the main pillar supporting the fascinating cognitive abilities of the brain, to name just some examples. The geometry of signal propagation is determined as much by the network topology as it is by the diverse forms of nonlinear interactions that may take place between the nodes. Advances are therefore often system dependent and have limited translational potential across domains. Given over two decades worth of research on the subject, the time is thus certainly ripe, indeed the need is urgent, for a comprehensive review of signal propagation in complex networks. We here first survey different models that determine the nature of interactions between the nodes, including epidemic models, Kuramoto models, diffusion models, cascading failure models, and models describing neuronal dynamics. Secondly, we cover different types of complex networks and their topologies, including temporal networks, multilayer networks, and neural networks. Next, we cover network time series analysis techniques that make use of signal propagation, including network correlation analysis, information transfer and nonlinear correlation tools, network reconstruction, source localization and link prediction, as well as approaches based on artificial intelligence. Lastly, we review applications in epidemiology, social dynamics, neuroscience, engineering, and robotics. Taken together, we thus provide the reader with an up-to-date review of the complexities associated with the network's role in propagating signals in the hope of better harnessing this to devise innovative applications across engineering, the social and natural sciences as well as to inspire future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YE完成签到,获得积分10
1秒前
yt完成签到 ,获得积分10
1秒前
无限的妙芙完成签到 ,获得积分10
1秒前
1秒前
moon发布了新的文献求助10
2秒前
所所应助斯文的乌采纳,获得10
4秒前
4秒前
胡先生的小口袋完成签到,获得积分10
4秒前
小狸花完成签到,获得积分10
4秒前
5秒前
Dreamhappy发布了新的文献求助30
5秒前
6秒前
冰兰阿托品完成签到 ,获得积分10
7秒前
Ava应助默默的元冬采纳,获得10
7秒前
Alina1874发布了新的文献求助20
7秒前
强健的迎波完成签到,获得积分10
9秒前
赘婿应助Torrance采纳,获得10
10秒前
hala安胖胖发布了新的文献求助10
10秒前
10秒前
慕青应助RMgX采纳,获得10
10秒前
huxx完成签到,获得积分10
10秒前
开开心心做科研应助Shaewei采纳,获得30
11秒前
12秒前
mindi完成签到,获得积分10
12秒前
12秒前
今后应助byumi采纳,获得10
13秒前
13秒前
13秒前
13秒前
浮游应助科研通管家采纳,获得10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
蓝天应助科研通管家采纳,获得10
13秒前
上官若男应助科研通管家采纳,获得10
13秒前
13秒前
Ava应助科研通管家采纳,获得10
13秒前
13秒前
浮游应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
ding应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649603
求助须知:如何正确求助?哪些是违规求助? 4778715
关于积分的说明 15049374
捐赠科研通 4808630
什么是DOI,文献DOI怎么找? 2571661
邀请新用户注册赠送积分活动 1528083
关于科研通互助平台的介绍 1486851