Signal propagation in complex networks

物理 网络拓扑 人工智能 复杂网络 非线性系统 封面(代数) 人工神经网络 信号(编程语言) 不断发展的网络 网络科学 信号处理 数据科学 机器学习 拓扑(电路) 电信 计算机网络 万维网 计算机科学 工程类 组合数学 程序设计语言 数学 雷达 机械工程 量子力学
作者
Peng Ji,Jiachen Ye,Yu Mu,Wei Lin,Yang Tian,Chittaranjan Hens,Matjaž Perc,Yang Tang,Jie Sun,Jürgen Kurths
出处
期刊:Physics Reports [Elsevier]
卷期号:1017: 1-96 被引量:282
标识
DOI:10.1016/j.physrep.2023.03.005
摘要

Signal propagation in complex networks drives epidemics, is responsible for information going viral, promotes trust and facilitates moral behavior in social groups, enables the development of misinformation detection algorithms, and it is the main pillar supporting the fascinating cognitive abilities of the brain, to name just some examples. The geometry of signal propagation is determined as much by the network topology as it is by the diverse forms of nonlinear interactions that may take place between the nodes. Advances are therefore often system dependent and have limited translational potential across domains. Given over two decades worth of research on the subject, the time is thus certainly ripe, indeed the need is urgent, for a comprehensive review of signal propagation in complex networks. We here first survey different models that determine the nature of interactions between the nodes, including epidemic models, Kuramoto models, diffusion models, cascading failure models, and models describing neuronal dynamics. Secondly, we cover different types of complex networks and their topologies, including temporal networks, multilayer networks, and neural networks. Next, we cover network time series analysis techniques that make use of signal propagation, including network correlation analysis, information transfer and nonlinear correlation tools, network reconstruction, source localization and link prediction, as well as approaches based on artificial intelligence. Lastly, we review applications in epidemiology, social dynamics, neuroscience, engineering, and robotics. Taken together, we thus provide the reader with an up-to-date review of the complexities associated with the network's role in propagating signals in the hope of better harnessing this to devise innovative applications across engineering, the social and natural sciences as well as to inspire future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
helitrope发布了新的文献求助20
刚刚
yinhao发布了新的文献求助10
刚刚
科研通AI6应助制药小兵采纳,获得10
刚刚
刚刚
lawang发布了新的文献求助10
1秒前
1秒前
ChemistryZyh完成签到,获得积分10
2秒前
2秒前
2秒前
April发布了新的文献求助10
2秒前
李健的小迷弟应助燕子采纳,获得10
3秒前
weila发布了新的文献求助30
3秒前
3秒前
4秒前
Jasper应助财源滚滚采纳,获得10
4秒前
4秒前
123应助积极的傲儿采纳,获得10
5秒前
星辰大海应助实验一定顺采纳,获得10
5秒前
wu关注了科研通微信公众号
6秒前
6秒前
耀阳完成签到 ,获得积分10
6秒前
是小孙呀发布了新的文献求助10
6秒前
6秒前
YANA完成签到,获得积分10
7秒前
zpc发布了新的文献求助30
7秒前
浮游应助真实的一鸣采纳,获得10
7秒前
四糸乃发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
9秒前
调皮的天真完成签到,获得积分10
9秒前
Blue完成签到 ,获得积分10
10秒前
hhdong发布了新的文献求助10
10秒前
酷波er应助lawang采纳,获得10
11秒前
11秒前
lvbowen发布了新的文献求助10
11秒前
12秒前
小蘑菇应助吃不下采纳,获得10
13秒前
白羊应助Kuripa采纳,获得30
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577678
求助须知:如何正确求助?哪些是违规求助? 4662703
关于积分的说明 14743115
捐赠科研通 4603383
什么是DOI,文献DOI怎么找? 2526334
邀请新用户注册赠送积分活动 1496100
关于科研通互助平台的介绍 1465546