Signal propagation in complex networks

物理 网络拓扑 人工智能 复杂网络 非线性系统 封面(代数) 人工神经网络 信号(编程语言) 不断发展的网络 网络科学 信号处理 数据科学 机器学习 拓扑(电路) 电信 计算机网络 程序设计语言 计算机科学 机械工程 雷达 数学 量子力学 组合数学 万维网 工程类
作者
Peng Ji,Jiachen Ye,Yu Mu,Wei Lin,Yang Tian,Chittaranjan Hens,Matjaž Perc,Yang Tang,Jie Sun,Jürgen Kurths
出处
期刊:Physics Reports [Elsevier BV]
卷期号:1017: 1-96 被引量:194
标识
DOI:10.1016/j.physrep.2023.03.005
摘要

Signal propagation in complex networks drives epidemics, is responsible for information going viral, promotes trust and facilitates moral behavior in social groups, enables the development of misinformation detection algorithms, and it is the main pillar supporting the fascinating cognitive abilities of the brain, to name just some examples. The geometry of signal propagation is determined as much by the network topology as it is by the diverse forms of nonlinear interactions that may take place between the nodes. Advances are therefore often system dependent and have limited translational potential across domains. Given over two decades worth of research on the subject, the time is thus certainly ripe, indeed the need is urgent, for a comprehensive review of signal propagation in complex networks. We here first survey different models that determine the nature of interactions between the nodes, including epidemic models, Kuramoto models, diffusion models, cascading failure models, and models describing neuronal dynamics. Secondly, we cover different types of complex networks and their topologies, including temporal networks, multilayer networks, and neural networks. Next, we cover network time series analysis techniques that make use of signal propagation, including network correlation analysis, information transfer and nonlinear correlation tools, network reconstruction, source localization and link prediction, as well as approaches based on artificial intelligence. Lastly, we review applications in epidemiology, social dynamics, neuroscience, engineering, and robotics. Taken together, we thus provide the reader with an up-to-date review of the complexities associated with the network's role in propagating signals in the hope of better harnessing this to devise innovative applications across engineering, the social and natural sciences as well as to inspire future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助zhuzhu采纳,获得10
1秒前
满天星发布了新的文献求助10
2秒前
机灵白桃完成签到,获得积分10
2秒前
popo6150完成签到 ,获得积分10
3秒前
鲤跃发布了新的文献求助10
3秒前
隐形曼青应助aaa采纳,获得10
3秒前
1351567822应助猪猪hero采纳,获得10
4秒前
单薄的夜南应助猪猪hero采纳,获得10
4秒前
老大蒂亚戈应助猪猪hero采纳,获得10
4秒前
老大蒂亚戈应助猪猪hero采纳,获得10
4秒前
41应助猪猪hero采纳,获得10
4秒前
傻傻的凤灵应助猪猪hero采纳,获得10
4秒前
hhhi应助猪猪hero采纳,获得10
4秒前
Akim应助猪猪hero采纳,获得10
4秒前
wdy111应助猪猪hero采纳,获得20
4秒前
Hatexist应助猪猪hero采纳,获得10
4秒前
5秒前
5秒前
6秒前
7秒前
jagger完成签到,获得积分10
7秒前
合适忆南完成签到,获得积分10
7秒前
ghhu发布了新的文献求助10
8秒前
丘比特应助冷傲的罡采纳,获得10
9秒前
10秒前
InaZheng发布了新的文献求助10
10秒前
风_feng发布了新的文献求助10
11秒前
田様应助满天星采纳,获得10
11秒前
12秒前
youyuer发布了新的文献求助10
12秒前
14秒前
14秒前
14秒前
Mindy给Mindy的求助进行了留言
14秒前
HUO完成签到,获得积分10
15秒前
15秒前
乐乐发布了新的文献求助10
15秒前
乐乐应助平淡远山采纳,获得10
15秒前
16秒前
555557应助鲤跃采纳,获得10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992317
求助须知:如何正确求助?哪些是违规求助? 3533285
关于积分的说明 11261852
捐赠科研通 3272704
什么是DOI,文献DOI怎么找? 1805867
邀请新用户注册赠送积分活动 882732
科研通“疑难数据库(出版商)”最低求助积分说明 809459