Signal propagation in complex networks

物理 网络拓扑 人工智能 复杂网络 非线性系统 封面(代数) 人工神经网络 信号(编程语言) 不断发展的网络 网络科学 信号处理 数据科学 机器学习 拓扑(电路) 电信 计算机网络 万维网 计算机科学 工程类 组合数学 程序设计语言 数学 雷达 机械工程 量子力学
作者
Peng Ji,Jiachen Ye,Yu Mu,Wei Lin,Yang Tian,Chittaranjan Hens,Matjaž Perc,Yang Tang,Jie Sun,Jürgen Kurths
出处
期刊:Physics Reports [Elsevier]
卷期号:1017: 1-96 被引量:282
标识
DOI:10.1016/j.physrep.2023.03.005
摘要

Signal propagation in complex networks drives epidemics, is responsible for information going viral, promotes trust and facilitates moral behavior in social groups, enables the development of misinformation detection algorithms, and it is the main pillar supporting the fascinating cognitive abilities of the brain, to name just some examples. The geometry of signal propagation is determined as much by the network topology as it is by the diverse forms of nonlinear interactions that may take place between the nodes. Advances are therefore often system dependent and have limited translational potential across domains. Given over two decades worth of research on the subject, the time is thus certainly ripe, indeed the need is urgent, for a comprehensive review of signal propagation in complex networks. We here first survey different models that determine the nature of interactions between the nodes, including epidemic models, Kuramoto models, diffusion models, cascading failure models, and models describing neuronal dynamics. Secondly, we cover different types of complex networks and their topologies, including temporal networks, multilayer networks, and neural networks. Next, we cover network time series analysis techniques that make use of signal propagation, including network correlation analysis, information transfer and nonlinear correlation tools, network reconstruction, source localization and link prediction, as well as approaches based on artificial intelligence. Lastly, we review applications in epidemiology, social dynamics, neuroscience, engineering, and robotics. Taken together, we thus provide the reader with an up-to-date review of the complexities associated with the network's role in propagating signals in the hope of better harnessing this to devise innovative applications across engineering, the social and natural sciences as well as to inspire future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
身为风帆发布了新的文献求助10
刚刚
1秒前
开心使者发布了新的文献求助10
1秒前
2秒前
壹贰叁肆发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
4秒前
dejavu发布了新的文献求助10
5秒前
5秒前
7秒前
桃七发布了新的文献求助10
7秒前
cactus完成签到 ,获得积分10
7秒前
7秒前
Yimi发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
李里哩发布了新的文献求助10
11秒前
涯光完成签到,获得积分10
11秒前
12秒前
小蘑菇发布了新的文献求助10
13秒前
14秒前
14秒前
oyasimi发布了新的文献求助10
14秒前
14秒前
司空雨筠完成签到,获得积分10
15秒前
15秒前
冷静蜗牛完成签到,获得积分10
16秒前
hrpppp发布了新的文献求助50
16秒前
16秒前
LHTTT发布了新的文献求助10
17秒前
大气的苠发布了新的文献求助10
17秒前
小马甲应助陳.采纳,获得10
18秒前
于豪杰发布了新的文献求助10
19秒前
oyasimi完成签到,获得积分10
19秒前
满意紫丝发布了新的文献求助10
19秒前
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694691
求助须知:如何正确求助?哪些是违规求助? 5098273
关于积分的说明 15214299
捐赠科研通 4851210
什么是DOI,文献DOI怎么找? 2602193
邀请新用户注册赠送积分活动 1554073
关于科研通互助平台的介绍 1511978