Boosting electrocatalytic performance and durability of Pt nanoparticles by conductive MO2−x (M = Ti, Zr) supports

催化作用 电催化剂 电化学 材料科学 纳米颗粒 电导率 金属 铂金 氧还原反应 化学工程 电极 纳米技术 无机化学 化学 物理化学 工程类 冶金 有机化学
作者
Wenjuan Shi,Hyun-Uk Park,Ah-Hyeon Park,Liangyao Xue,Seong-Kyu Kim,Gu‐Gon Park,Young‐Uk Kwon
出处
期刊:Applied Catalysis B-environmental [Elsevier]
卷期号:331: 122692-122692 被引量:16
标识
DOI:10.1016/j.apcatb.2023.122692
摘要

Metal oxides, especially TiO2, have been studied as an alternative support to replace the carbon in the conventional Pt/C catalysts for their high electrochemical stability at high electrode potentials. The low conductivity of metal oxides has been a big hurdle. In this work, we successfully overcome this issue by forming conductive MO2−x (M = Ti and Zr) through solid state reduction with NaBH4. The temperature of the reaction has turned out to be a crucial parameter to obtain highly conductive MO2−x. Pt/MO2−x catalysts were prepared by depositing Pt nanoparticles (NPs) on MO2−x supports whose analysis data, show that the Pt NPs are uniformly deposited on the surface of MO2−x supports and that there is a strong electronic interaction between Pt NPs and MO2−x supports. The electrocatalysis of Pt/MO2−x catalysts for oxygen reduction reaction (ORR) has been studied. Pt/MO2−x catalysts show significantly enhanced mass activity (MA) and specific activity (SA) from those of Pt/C catalyst. More importantly, Pt/MO2−x catalysts show a superior long-term durability. After 50,000 cycles of durability test, Pt/T370 catalyst retains 75%/84% of initial MA/SA, and Pt/Z438 catalyst retains 81%/88% of initial MA/SA, while Pt/C catalyst keeps only 36%/56% of initial MA/SA after 30,000 cycles. The significantly enhanced ORR performance of Pt/MO2−x catalysts is attributed to the strong metal-support interaction (SMSI) effect between MO2−x and Pt NPs as well as the high conductivity of MO2−x supports. We believe Pt/MO2−x catalysts are a promising form of electrocatalysts that can replace the presently dominating but not quite satisfactory Pt/C in fuel cell applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开放青旋应助unknown采纳,获得10
刚刚
1秒前
大力的远望完成签到 ,获得积分10
3秒前
adamchris应助louise采纳,获得30
4秒前
叶成会发布了新的文献求助10
5秒前
英俊的铭应助囡囡采纳,获得30
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
周老师完成签到 ,获得积分10
8秒前
你好完成签到 ,获得积分10
8秒前
FashionBoy应助denghn采纳,获得10
11秒前
怡然剑成完成签到 ,获得积分10
11秒前
残剑月发布了新的文献求助30
13秒前
故事细腻完成签到 ,获得积分10
13秒前
14秒前
小于爱科研完成签到,获得积分10
14秒前
Adzuki0812完成签到,获得积分10
14秒前
Lawyer完成签到 ,获得积分10
16秒前
harlind发布了新的文献求助10
18秒前
鳗鱼匕完成签到,获得积分10
18秒前
Psychexin完成签到,获得积分10
18秒前
Pauline完成签到 ,获得积分10
19秒前
美丽心情完成签到,获得积分10
20秒前
LL完成签到,获得积分10
21秒前
dy完成签到,获得积分10
22秒前
wangpinyl完成签到,获得积分10
22秒前
dzy完成签到,获得积分10
24秒前
无辜茗完成签到 ,获得积分10
25秒前
整齐百褶裙完成签到 ,获得积分10
25秒前
英姑应助jovrtic采纳,获得10
26秒前
SerCheung完成签到,获得积分10
28秒前
性感母蟑螂完成签到 ,获得积分10
28秒前
yundong完成签到,获得积分10
29秒前
29秒前
三十完成签到 ,获得积分10
29秒前
不安的米老鼠完成签到,获得积分10
31秒前
迈克老狼完成签到 ,获得积分10
33秒前
33秒前
欧阳完成签到,获得积分10
33秒前
koala发布了新的文献求助30
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603540
求助须知:如何正确求助?哪些是违规求助? 4688515
关于积分的说明 14854271
捐赠科研通 4693471
什么是DOI,文献DOI怎么找? 2540831
邀请新用户注册赠送积分活动 1507052
关于科研通互助平台的介绍 1471806