Boosting electrocatalytic performance and durability of Pt nanoparticles by conductive MO2−x (M = Ti, Zr) supports

催化作用 电催化剂 电化学 材料科学 纳米颗粒 电导率 金属 铂金 氧还原反应 化学工程 电极 纳米技术 无机化学 化学 物理化学 工程类 冶金 有机化学
作者
Wenjuan Shi,Hyun-Uk Park,Ah-Hyeon Park,Liangyao Xue,Seong-Kyu Kim,Gu‐Gon Park,Young‐Uk Kwon
出处
期刊:Applied Catalysis B-environmental [Elsevier]
卷期号:331: 122692-122692 被引量:16
标识
DOI:10.1016/j.apcatb.2023.122692
摘要

Metal oxides, especially TiO2, have been studied as an alternative support to replace the carbon in the conventional Pt/C catalysts for their high electrochemical stability at high electrode potentials. The low conductivity of metal oxides has been a big hurdle. In this work, we successfully overcome this issue by forming conductive MO2−x (M = Ti and Zr) through solid state reduction with NaBH4. The temperature of the reaction has turned out to be a crucial parameter to obtain highly conductive MO2−x. Pt/MO2−x catalysts were prepared by depositing Pt nanoparticles (NPs) on MO2−x supports whose analysis data, show that the Pt NPs are uniformly deposited on the surface of MO2−x supports and that there is a strong electronic interaction between Pt NPs and MO2−x supports. The electrocatalysis of Pt/MO2−x catalysts for oxygen reduction reaction (ORR) has been studied. Pt/MO2−x catalysts show significantly enhanced mass activity (MA) and specific activity (SA) from those of Pt/C catalyst. More importantly, Pt/MO2−x catalysts show a superior long-term durability. After 50,000 cycles of durability test, Pt/T370 catalyst retains 75%/84% of initial MA/SA, and Pt/Z438 catalyst retains 81%/88% of initial MA/SA, while Pt/C catalyst keeps only 36%/56% of initial MA/SA after 30,000 cycles. The significantly enhanced ORR performance of Pt/MO2−x catalysts is attributed to the strong metal-support interaction (SMSI) effect between MO2−x and Pt NPs as well as the high conductivity of MO2−x supports. We believe Pt/MO2−x catalysts are a promising form of electrocatalysts that can replace the presently dominating but not quite satisfactory Pt/C in fuel cell applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
123完成签到 ,获得积分10
4秒前
123完成签到 ,获得积分10
6秒前
6秒前
闪闪青雪完成签到,获得积分10
8秒前
10秒前
源孤律醒完成签到 ,获得积分10
10秒前
TanXu完成签到 ,获得积分10
10秒前
12秒前
gcl完成签到,获得积分10
14秒前
17秒前
润润轩轩完成签到 ,获得积分10
20秒前
乌特拉完成签到 ,获得积分10
25秒前
MchemG应助gcl采纳,获得20
25秒前
珠珠完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
28秒前
小明完成签到 ,获得积分10
29秒前
Song完成签到,获得积分10
30秒前
Breeze完成签到 ,获得积分10
32秒前
科研顺利完成签到,获得积分10
33秒前
壮观的菠萝完成签到,获得积分10
36秒前
37秒前
爱听歌嚓茶完成签到,获得积分10
38秒前
Steven完成签到,获得积分10
40秒前
风中一叶完成签到 ,获得积分0
40秒前
1993963发布了新的文献求助10
42秒前
CL完成签到,获得积分10
43秒前
小蘑菇应助风清扬采纳,获得10
43秒前
吉吉完成签到 ,获得积分10
45秒前
46秒前
Rn完成签到 ,获得积分0
48秒前
Ava应助1993963采纳,获得10
50秒前
科目三应助hui采纳,获得10
52秒前
不秃燃的小老弟完成签到 ,获得积分10
52秒前
白昼の月完成签到 ,获得积分0
53秒前
kiwi完成签到,获得积分20
55秒前
华仔应助猪猪hero采纳,获得10
56秒前
神勇友灵完成签到,获得积分0
58秒前
zhang完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603497
求助须知:如何正确求助?哪些是违规求助? 4688514
关于积分的说明 14853926
捐赠科研通 4692781
什么是DOI,文献DOI怎么找? 2540759
邀请新用户注册赠送积分活动 1507041
关于科研通互助平台的介绍 1471763