Multivariate Time Series Anomaly Detection With Generative Adversarial Networks Based on Active Distortion Transformer

异常检测 计算机科学 多元统计 人工智能 变压器 失真(音乐) 对抗制 异常(物理) 模式识别(心理学) 生成语法 机器学习 数据挖掘 算法 工程类 物理 电气工程 计算机网络 凝聚态物理 电压 放大器 带宽(计算)
作者
Lingkun Kong,Jinsong Yu,Diyin Tang,Yue Song,Danyang Han
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (9): 9658-9668 被引量:5
标识
DOI:10.1109/jsen.2023.3260563
摘要

Detecting anomalies for multivariate time series is of great importance in modern industrial applications. However, due to the complex temporal dynamics in modern systems, finding a distinguishable judge criterion is hard, which makes accurate anomaly detection still a challenging task. In order to better capture the anomalous features and design a more informative judge criterion, this article presents an unsupervised generative adversarial network (GAN) for multivariate time series anomaly detection, which highlights a novel active distortion transformer (ADT) block. Different from the vanilla transformer, the ADT block can make good use of the prior knowledge of time sequences’ overall associations by actively conducting distortion during the reconstruction of input sequences. Benefiting from the ADT block, the network simultaneously utilizes the sequence associations and reconstruction error to recognize anomalies. In the online detection phase, anomalous data points tend to be less correlated with the overall sequence and have greater reconstruction errors than normal ones, so that an irrelevance score and a reconstruction error score can be obtained. We combine the two scores to generate a more powerful anomaly score as the judge criterion. Extensive experiments are conducted on four publicly available sensor datasets, and we also make comparisons with the recent baselines. Results show that our model outperforms the recent state-of-the-art methods, demonstrating the effectiveness of our method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
jundongfan完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
希望天下0贩的0应助zw采纳,获得10
1秒前
小二郎应助DAL采纳,获得10
1秒前
物华弥新完成签到 ,获得积分10
4秒前
英姑应助雾语采纳,获得10
4秒前
落寞的又菡完成签到,获得积分10
4秒前
脑洞疼应助大气摩托采纳,获得10
4秒前
shijie805发布了新的文献求助10
4秒前
4秒前
碧球发布了新的文献求助10
5秒前
陌然浅笑完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
了一李应助flora采纳,获得10
5秒前
可爱的弘文完成签到,获得积分20
6秒前
科研通AI6应助蕾蕾采纳,获得10
7秒前
8秒前
科研通AI6应助牛牛很忙呀采纳,获得10
9秒前
9秒前
9秒前
elf发布了新的文献求助10
9秒前
小管发布了新的文献求助10
9秒前
Ayao完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
10秒前
鸭梨发布了新的文献求助10
11秒前
HanGuilin发布了新的文献求助10
12秒前
Sakura完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
百香果了没完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666053
求助须知:如何正确求助?哪些是违规求助? 4879128
关于积分的说明 15116083
捐赠科研通 4825220
什么是DOI,文献DOI怎么找? 2583153
邀请新用户注册赠送积分活动 1537198
关于科研通互助平台的介绍 1495512