亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning-based breast cancer diagnosis in breast MRI: systematic review and meta-analysis

医学 乳腺癌 过度拟合 荟萃分析 乳房磁振造影 系统回顾 神经组阅片室 检查表 医学物理学 机器学习 漏斗图 人工智能 放射科 梅德林 癌症 出版偏见 内科学 人工神经网络 乳腺摄影术 计算机科学 神经学 法学 认知心理学 精神科 政治学 心理学
作者
Kamarul Amin Abdullah,Sara Marziali,Muzna Nanaa,Lorena Escudero Sánchez,Nicholas Roy Payne,Fiona J. Gilbert
出处
期刊:European Radiology [Springer Nature]
标识
DOI:10.1007/s00330-025-11406-6
摘要

Abstract Objectives The aim of this work is to evaluate the performance of deep learning (DL) models for breast cancer diagnosis with MRI. Materials and methods A literature search was conducted on Web of Science, PubMed, and IEEE Xplore for relevant studies published from January 2015 to February 2024. The study was registered with the PROSPERO International Prospective Register of Systematic Reviews (protocol no. CRD42024485371). The quality assessment of diagnostic accuracy studies-2 (QUADAS2) tool and the Must AI Criteria-10 (MAIC-10) checklist were used to assess quality and risk of bias. The meta-analysis included studies reporting DL for breast cancer diagnosis and their performance, from which pooled summary estimates for the area under the curve (AUC), sensitivity, and specificity were calculated. Results A total of 40 studies were included, of which only 21 were eligible for quantitative analysis. Convolutional neural networks (CNNs) were used in 62.5% (25/40) of the implemented models, with the remaining 37.5% (15/40) hybrid composite models (HCMs). The pooled estimates of AUC, sensitivity, and specificity were 0.90 (95% CI: 0.87, 0.93), 88% (95% CI: 86, 91%), and 90% (95% CI: 87, 93%), respectively. Conclusions DL models used for breast cancer diagnosis on MRI achieve high performance. However, there is considerable inherent variability in this analysis. Therefore, continuous evaluation and refinement of DL models is essential to ensure their practicality in the clinical setting. Key Points Question Can DL models improve diagnostic accuracy in breast MRI, addressing challenges like overfitting and heterogeneity in study designs and imaging sequences ? Findings DL achieved high diagnostic accuracy (AUC 0.90, sensitivity 88%, specificity 90%) in breast MRI, with training size significantly impacting performance metrics (p < 0.001) . Clinical relevance DL models demonstrate high accuracy in breast cancer diagnosis using MRI, showing the potential to enhance diagnostic confidence and reduce radiologist workload, especially with larger datasets minimizing overfitting and improving clinical reliability .

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奶盐牙牙乐完成签到 ,获得积分10
1秒前
3秒前
4秒前
雪山飞狐发布了新的文献求助10
9秒前
16秒前
Peri发布了新的文献求助10
19秒前
1分钟前
满意人英发布了新的文献求助10
1分钟前
满意人英完成签到,获得积分10
1分钟前
2分钟前
Guo完成签到 ,获得积分10
2分钟前
2分钟前
学习之人完成签到 ,获得积分0
2分钟前
叮咚完成签到,获得积分20
2分钟前
3分钟前
无言完成签到 ,获得积分10
3分钟前
3分钟前
隐形问萍发布了新的文献求助10
3分钟前
赘婿应助爱听歌笑寒采纳,获得10
3分钟前
3分钟前
3分钟前
John完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
希望天下0贩的0应助jyy采纳,获得10
4分钟前
4分钟前
4分钟前
月墨雪发布了新的文献求助10
4分钟前
浮云完成签到,获得积分10
4分钟前
小脚丫完成签到 ,获得积分10
5分钟前
烟花应助繁荣的土豆采纳,获得10
5分钟前
tarako发布了新的文献求助30
5分钟前
子平完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
Lucas应助爱听歌笑寒采纳,获得10
5分钟前
5分钟前
jyy发布了新的文献求助10
5分钟前
5分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3393035
求助须知:如何正确求助?哪些是违规求助? 3003391
关于积分的说明 8809133
捐赠科研通 2690184
什么是DOI,文献DOI怎么找? 1473496
科研通“疑难数据库(出版商)”最低求助积分说明 681603
邀请新用户注册赠送积分活动 674534