已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Bearing fault diagnosis method using CNN with denoising structure under strong noise background

降噪 计算机科学 小波 卷积神经网络 噪音(视频) 断层(地质) 人工智能 模式识别(心理学) 信号(编程语言) 程序设计语言 地震学 图像(数学) 地质学
作者
Junxiang Wang,Hongkun Li,Xuejun Liu,Bin Sun,Yuan Liu
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/adaa0a
摘要

Abstract In the monitoring of rotating machinery area, intelligent fault diagnosis based on signal analysis has been widely applied. However, due to modulation of the hardware transmission path and interference from environmental noise, the quality of collected vibration signals is prone to degradation. Convolutional Neural Networks (CNNs) are currently the most widely used models for fault diagnosis. However, their lack of dedicated denoising structures makes them less robust against noise. Therefore, this paper proposes an end-to-end denoising CNN fault diagnosis model. Firstly, a Discrete-wavelet Attention Layer (DAL) and convolutional layers are alternately employed to extract signal features in the wavelet domain. Secondly, according the periodic self-similarity of vibration signals, the Gramian Noise Reduction (GNR) method is utilized to enhance fault features in the signal. Subsequently, GNR and DAL are integrated into the model to simultaneously extract features from the original signal and the vibration signal enhanced by GNR, thereby enhancing the model fault diagnosis performance in noisy environments. Finally, various levels of noise are added to CWRU and DUT data, and compared with other advanced methods, to verify the effectiveness and universality of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zzz发布了新的文献求助10
1秒前
1秒前
阿源完成签到 ,获得积分10
1秒前
彭于晏应助Anna采纳,获得10
2秒前
长江完成签到 ,获得积分10
2秒前
所所应助YUN采纳,获得10
3秒前
李健的小迷弟应助XU采纳,获得10
3秒前
无花果应助Literaturecome采纳,获得10
3秒前
TY发布了新的文献求助10
3秒前
4秒前
Owen应助ShellyHan采纳,获得10
5秒前
顾冷发布了新的文献求助30
5秒前
ximei发布了新的文献求助10
6秒前
包容的剑发布了新的文献求助10
6秒前
6秒前
8秒前
9秒前
危机的一斩完成签到,获得积分10
9秒前
10秒前
科研通AI5应助nini采纳,获得10
10秒前
10秒前
南湖秋水发布了新的文献求助10
10秒前
窦嘉懿完成签到 ,获得积分10
11秒前
12秒前
12秒前
经年完成签到,获得积分20
12秒前
12秒前
科研通AI5应助Try_1采纳,获得10
13秒前
CSS发布了新的文献求助10
13秒前
hajy发布了新的文献求助10
14秒前
雨肖发布了新的文献求助10
14秒前
14秒前
更深的蓝发布了新的文献求助20
14秒前
14秒前
高天雨发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
Lucas应助孤独的半芹采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555408
求助须知:如何正确求助?哪些是违规求助? 3131038
关于积分的说明 9389777
捐赠科研通 2830505
什么是DOI,文献DOI怎么找? 1556071
邀请新用户注册赠送积分活动 726445
科研通“疑难数据库(出版商)”最低求助积分说明 715750