Spectral Fingerprinting of Tencha Processing: Optimising the Detection of Total Free Amino Acid Content in Processing Lines by Hyperspectral Analysis

高光谱成像 偏最小二乘回归 VNIR公司 人工智能 计算机科学 特征选择 支持向量机 机器学习 模式识别(心理学)
作者
Qinghai He,Yihang Guo,Xiaoli Li,Yong He,Zhi Lin,Hui Zeng
出处
期刊:Foods [MDPI AG]
卷期号:13 (23): 3862-3862
标识
DOI:10.3390/foods13233862
摘要

The quality and flavor of tea leaves are significantly influenced by chemical composition, with the content of free amino acids serving as a key indicator for assessing the quality of Tencha. Accurately and quickly measuring free amino acids during tea processing is crucial for monitoring and optimizing production processes. However, traditional chemical analysis methods are often time-consuming and costly, limiting their application in real-time quality control. Hyperspectral imaging (HSI) has shown significant effectiveness as a component detection tool in various agricultural applications. This study employs VNIR-HSI combined with machine learning algorithms to develop a model for visualizing the total free amino acid content in Tencha samples that have undergone different processing steps on the production line. Four pretreating methods were employed to preprocess the spectra, and partial least squares regression (PLSR) and least squares support vector machine regression (LS–SVR) models were established from the perspectives of individual processes and the entire process. Combining competitive adaptive reweighted sampling (CARS) and variable iterative space shrinkage approach (VISSA) methods for characteristic band selection, specific bands were chosen to predict the amino acid content. By comparing modeling evaluation indicators for each model, the optimal model was identified: the overall model CT+CARS+PLSR, with predictive indicators Rc2 = 0.9885, Rp2 = 0.9566, RMSEC = 0.0956, RMSEP = 0.1749, RPD = 4.8021, enabling the visualization of total free amino acid content in processed Tencha leaves. Here, we establish a benchmark for machine learning-based HSI, integrating this technology into the tea processing workflow to provide a real-time decision support tool for quality control, offering a novel method for the rapid and accurate prediction of free amino acids during tea processing. This achievement not only provides a scientific basis for the tea processing sector but also opens new avenues for the application of hyperspectral imaging technology in food science.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
平常的过客完成签到,获得积分10
刚刚
1秒前
852应助kyrrt采纳,获得10
2秒前
香蕉觅云应助wwl采纳,获得10
3秒前
VV完成签到 ,获得积分10
4秒前
CodeCraft应助单薄惜文采纳,获得10
5秒前
5秒前
打打应助学术混子采纳,获得10
7秒前
JX完成签到 ,获得积分10
7秒前
传奇3应助fkdbdy采纳,获得10
7秒前
知夏完成签到,获得积分10
8秒前
苯巴比妥不妥完成签到 ,获得积分10
8秒前
9秒前
外向的藏今完成签到 ,获得积分10
9秒前
eyou发布了新的文献求助10
9秒前
李东东完成签到 ,获得积分10
9秒前
单薄的咖啡完成签到 ,获得积分10
9秒前
yukang完成签到,获得积分10
9秒前
orixero应助asdfqwer采纳,获得10
10秒前
Orange应助dd采纳,获得10
10秒前
棉棉发布了新的文献求助10
11秒前
12秒前
hu关闭了hu文献求助
13秒前
13秒前
15秒前
16秒前
今后应助高高的高丽采纳,获得10
16秒前
17秒前
Aoka完成签到,获得积分10
17秒前
18秒前
20秒前
活泼的诗桃完成签到,获得积分10
20秒前
21秒前
22秒前
Orange应助net80yhm采纳,获得10
22秒前
huanglj发布了新的文献求助10
23秒前
cxh发布了新的文献求助10
23秒前
23秒前
小王同学完成签到 ,获得积分10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3315909
求助须知:如何正确求助?哪些是违规求助? 2947608
关于积分的说明 8537809
捐赠科研通 2623744
什么是DOI,文献DOI怎么找? 1435448
科研通“疑难数据库(出版商)”最低求助积分说明 665595
邀请新用户注册赠送积分活动 651426