Spectral Fingerprinting of Tencha Processing: Optimising the Detection of Total Free Amino Acid Content in Processing Lines by Hyperspectral Analysis

高光谱成像 偏最小二乘回归 VNIR公司 人工智能 计算机科学 特征选择 支持向量机 机器学习 模式识别(心理学)
作者
Qinghai He,Yihang Guo,Xiaoli Li,Yong He,Zhi Lin,Hui Zeng
出处
期刊:Foods [Multidisciplinary Digital Publishing Institute]
卷期号:13 (23): 3862-3862
标识
DOI:10.3390/foods13233862
摘要

The quality and flavor of tea leaves are significantly influenced by chemical composition, with the content of free amino acids serving as a key indicator for assessing the quality of Tencha. Accurately and quickly measuring free amino acids during tea processing is crucial for monitoring and optimizing production processes. However, traditional chemical analysis methods are often time-consuming and costly, limiting their application in real-time quality control. Hyperspectral imaging (HSI) has shown significant effectiveness as a component detection tool in various agricultural applications. This study employs VNIR-HSI combined with machine learning algorithms to develop a model for visualizing the total free amino acid content in Tencha samples that have undergone different processing steps on the production line. Four pretreating methods were employed to preprocess the spectra, and partial least squares regression (PLSR) and least squares support vector machine regression (LS–SVR) models were established from the perspectives of individual processes and the entire process. Combining competitive adaptive reweighted sampling (CARS) and variable iterative space shrinkage approach (VISSA) methods for characteristic band selection, specific bands were chosen to predict the amino acid content. By comparing modeling evaluation indicators for each model, the optimal model was identified: the overall model CT+CARS+PLSR, with predictive indicators Rc2 = 0.9885, Rp2 = 0.9566, RMSEC = 0.0956, RMSEP = 0.1749, RPD = 4.8021, enabling the visualization of total free amino acid content in processed Tencha leaves. Here, we establish a benchmark for machine learning-based HSI, integrating this technology into the tea processing workflow to provide a real-time decision support tool for quality control, offering a novel method for the rapid and accurate prediction of free amino acids during tea processing. This achievement not only provides a scientific basis for the tea processing sector but also opens new avenues for the application of hyperspectral imaging technology in food science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
woshiwuziq应助666采纳,获得20
刚刚
水溶c100发布了新的文献求助20
1秒前
ppjkq1发布了新的文献求助20
2秒前
3秒前
3秒前
杳鸢应助一年生黑麦草采纳,获得30
3秒前
好运关注了科研通微信公众号
4秒前
许初发布了新的文献求助10
4秒前
上进的pencil应助白衣轻叹采纳,获得10
4秒前
4秒前
4秒前
8R60d8应助Elio采纳,获得10
4秒前
5秒前
6秒前
6秒前
6秒前
alexyang完成签到,获得积分10
6秒前
6秒前
6秒前
露露完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
精则养神发布了新的文献求助10
8秒前
8秒前
Apricot发布了新的文献求助10
9秒前
xiaopang完成签到,获得积分10
9秒前
陈宏宇完成签到,获得积分20
9秒前
笨笨摇伽完成签到,获得积分10
9秒前
研友_Zzaoqn完成签到,获得积分10
10秒前
dream发布了新的文献求助10
10秒前
皮老八发布了新的文献求助10
10秒前
默默的问玉完成签到,获得积分10
10秒前
Avery发布了新的文献求助10
11秒前
Fengzhen007发布了新的文献求助10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得10
11秒前
乐观小之应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得30
12秒前
明亮幻枫应助科研通管家采纳,获得10
12秒前
liu应助科研通管家采纳,获得10
12秒前
shinysparrow应助科研通管家采纳,获得150
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952150
求助须知:如何正确求助?哪些是违规求助? 3497645
关于积分的说明 11088172
捐赠科研通 3228209
什么是DOI,文献DOI怎么找? 1784718
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801281