Characterization of G2/M checkpoint classifier for personalized treatment in uterine corpus endometrial carcinoma

分类器(UML) 医学 计算机科学 肿瘤科 内科学 人工智能
作者
Yiming Liu,Yusi Wang,Shu Tan,Xiaoxue Shi,Wen Jing-lin,Dejia Chen,Yue Zhao,Wenjing Pan,Zhaoyang Jia,Chang Lu,Ge Lou
出处
期刊:Cancer Cell International [Springer Nature]
卷期号:25 (1)
标识
DOI:10.1186/s12935-025-03667-4
摘要

Uterine Corpus Endometrial Carcinoma (UCEC) is a highly heterogeneous tumor, and limitations in current diagnostic methods, along with treatment resistance in some patients, pose significant challenges for managing UCEC. The excessive activation of G2/M checkpoint genes is a crucial factor affecting malignancy prognosis and promoting treatment resistance. Gene expression profiles and clinical feature data mainly came from the TCGA-UCEC cohort. Unsupervised clustering was performed to construct G2/M checkpoint (G2MC) subtypes. The differences in biological and clinical features of different subtypes were compared through survival analysis, clinical characteristics, immune infiltration, tumor mutation burden, and drug sensitivity analysis. Ultimately, an artificial neural network (ANN) and machine learning were employed to develop the G2MC subtypes classifier. We constructed a classifier based on the overall activity of the G2/M checkpoint signaling pathway to identify patients with different risks and treatment responses, and attempted to explore potential therapeutic targets. The results showed that two G2MC subtypes have completely different G2/M checkpoint-related gene expression profiles. Compared with the subtype C2, the subtype C1 exhibited higher G2MC scores and was associated with faster disease progression, higher clinical staging, poorer pathological types, and lower therapy responsiveness of cisplatin, radiotherapy and immunotherapy. Experiments targeting the feature gene KIF23 revealed its crucial role in reducing HEC-1A sensitivity to cisplatin and radiotherapy. In summary, our study developed a classifier for identifying G2MC subtypes, and this finding holds promise for advancing precision treatment strategies for UCEC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hachii发布了新的文献求助10
刚刚
小马甲应助zzzyq采纳,获得10
1秒前
Hello应助kkking采纳,获得10
1秒前
1秒前
lulu发布了新的文献求助10
2秒前
自觉灵完成签到,获得积分10
3秒前
4秒前
大方硬币关注了科研通微信公众号
5秒前
李爱国应助my采纳,获得10
6秒前
慕青应助my采纳,获得10
6秒前
大个应助my采纳,获得10
6秒前
Ava应助my采纳,获得10
6秒前
CipherSage应助my采纳,获得10
6秒前
科目三应助my采纳,获得10
6秒前
qc完成签到,获得积分10
6秒前
Eric发布了新的文献求助10
8秒前
动听牛排应助11采纳,获得10
9秒前
睡着的鱼完成签到 ,获得积分10
9秒前
10秒前
12秒前
Holy完成签到,获得积分10
13秒前
学术垃圾完成签到 ,获得积分10
14秒前
remedy完成签到,获得积分10
16秒前
调皮芝麻完成签到,获得积分10
16秒前
早点睡觉吧完成签到,获得积分10
16秒前
16秒前
17秒前
wycai发布了新的文献求助10
18秒前
暴0901完成签到,获得积分10
18秒前
ppj发布了新的文献求助10
18秒前
标致小珍发布了新的文献求助10
18秒前
18秒前
云中应助mr.pork采纳,获得10
19秒前
李爱国应助氨甲酰磷酸采纳,获得10
19秒前
hachii完成签到,获得积分10
20秒前
高鑫完成签到 ,获得积分10
20秒前
cong1216发布了新的文献求助10
21秒前
Charming完成签到,获得积分10
22秒前
牛战士从不摘下面具完成签到,获得积分10
22秒前
22秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488751
求助须知:如何正确求助?哪些是违规求助? 3076283
关于积分的说明 9144615
捐赠科研通 2768593
什么是DOI,文献DOI怎么找? 1519274
邀请新用户注册赠送积分活动 703714
科研通“疑难数据库(出版商)”最低求助积分说明 701952