EXPRESS: Revisiting Novel Word Semantic Priming: The Role of Strategic Priming Mechanisms

启动(农业) 刺激启动不同步 词汇判断任务 心理学 认知心理学 任务(项目管理) 语义记忆 词(群论) 计算机科学 自然语言处理 语言学 认知 神经科学 哲学 植物 发芽 生物 管理 经济
作者
Lewis Ball,Perrine Brusini,Colin Bannard
出处
期刊:Quarterly Journal of Experimental Psychology [SAGE]
标识
DOI:10.1177/17470218241306747
摘要

While it has been proposed that new words are encoded in a qualitatively different way from established words – in episodic rather than semantic memory — such accounts are challenged by the finding that newly-learnt words influence the processing of well-known word in semantic priming tasks. In this paper we explore whether this apparent contradiction is due to differences in task design. Specifically, we hypothesised that a large stimulus onset asynchrony (SOA) would allow the participant to engage strategic retrieval and priming mechanisms to facilitate the recognition of a semantically related word, compared to a shorter SOA which promotes more automatic processing. In Experiment 1, 60 participants learned 34 novel words and their meanings which later served as primes for related/unrelated existing word targets in a primed lexical decision task, with a 450 ms SOA. There was no significant priming effect. In Experiment 2, we increased the SOA to 1000 ms, and found a significant priming effect with novel words. Finally, there was no significant priming effect with novel words in Experiment 3 that used a 200 ms SOA. A semantic priming effect with familiar words was found in Experiment 1 and Experiment 3, but not Experiment 2 (the longest SOA). We interpret these results as providing evidence for the idea that new and existing words are represented differently, with the former encoded outside of conventional language networks as they appear to rely predominantly on slow (strategic) mechanisms to prime related, existing words.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Aries完成签到,获得积分10
3秒前
3秒前
Pretrial完成签到 ,获得积分10
3秒前
Jocelyn7发布了新的文献求助10
4秒前
wmmm发布了新的文献求助10
4秒前
余笙发布了新的文献求助10
5秒前
充电宝应助冷傲迎梦采纳,获得10
5秒前
彭于晏应助qi采纳,获得30
5秒前
科研通AI2S应助shor0414采纳,获得10
5秒前
ponyy发布了新的文献求助30
6秒前
秋之月发布了新的文献求助10
7秒前
skier发布了新的文献求助10
8秒前
balabala完成签到,获得积分20
8秒前
隐形曼青应助kb采纳,获得10
9秒前
yanyan发布了新的文献求助10
11秒前
繁笙完成签到 ,获得积分10
11秒前
11秒前
无言完成签到 ,获得积分10
11秒前
NONO完成签到 ,获得积分10
12秒前
星辰大海应助TT采纳,获得10
12秒前
14秒前
康康完成签到,获得积分10
14秒前
Xv完成签到,获得积分0
14秒前
17秒前
17秒前
香蕉觅云应助zfzf0422采纳,获得10
17秒前
18秒前
18秒前
李健应助爱听歌的向日葵采纳,获得10
19秒前
今后应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
烟花应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得80
19秒前
所所应助科研通管家采纳,获得20
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
Owen应助科研通管家采纳,获得30
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824