Crystalline‐Amorphous Interface‐Triggered Electron Redistribution on Copper(II) Sulfide@Metal (Ni, Co, and Fe) Oxyhydroxides for Ultra‐Efficient Overall Water/Seawater Splitting

材料科学 海水 再分配(选举) 硫化物 无定形固体 金属 非晶态金属 电子 无机化学 化学工程 冶金 合金 结晶学 海洋学 化学 法学 工程类 地质学 物理 政治 量子力学 政治学
作者
Peng Gu,Yidong Song,Yihe Fan,Xin Meng,Jin Liu,Guofeng Wang,Zhouguanwei Li,Heyuan Sun,Ziyu Zhao,Jinlong Zou
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:15 (14) 被引量:26
标识
DOI:10.1002/aenm.202403657
摘要

Abstract Rearranging the electronic orbitals of metal sites through interface engineering is the breakthrough for achieving high efficiencies in hydrogen/oxygen evolution reactions (HER/OER) on bimetallic catalysts. Here, via a multistep liquid‐phase synthesis strategy, the crystalline‐amorphous (c‐a) interface is built by coating amorphous oxyhydroxide layer on the surface of crystallized copper(II) sulfide (CuS@MOOH, M = iron (Fe), cobalt (Co) and nickel (Ni)) with an internal cavity. For HER, c‐a interface facilitates the electron filling of the 3d orbitals of Cu, thereby enhancing the coordination between Cu sites (Cu 2+ /Cu + ) and *H and reducing the energy barrier for *H adsorption. For OER, c‐a interface triggers electronic rearrangement in the 3d orbitals of M sites, prompting electron transition from the t2g orbitals to the eg orbitals to achieve a half‐filled state, optimizing the oxygen‐intermediates adsorption on M sites (M 3+ /M 4+ ). Among CuS@MOOH, the as‐marked CuS@CoOOH‐6 exhibits the best activities with ultra‐low overpotentials of 62 mV (HER) and 136 mV (OER). Only 1.52 V is sufficient to power the electrolyzer with CuS@CoOOH‐6‐based cathode/anode, maintaining a ultra‐stable efficiency (96.9 %) over 72 h. Notably, CuS@CoOOH‐6 also exhibits impressive activity/durability for natural seawater electrolysis. This study enhances understanding of the properties and electronic structure of the c‐a interface for water splitting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Helic发布了新的文献求助10
刚刚
tian发布了新的文献求助30
1秒前
2秒前
小代完成签到,获得积分10
2秒前
daggeraxe完成签到 ,获得积分10
2秒前
2秒前
Azurikasy完成签到,获得积分10
3秒前
幽默的泥猴桃完成签到,获得积分10
3秒前
3秒前
3秒前
石头发布了新的文献求助10
4秒前
Fa完成签到,获得积分10
4秒前
是冬天完成签到,获得积分10
5秒前
王彦林发布了新的文献求助10
5秒前
马幸运发布了新的文献求助10
5秒前
6秒前
jiu发布了新的文献求助10
7秒前
li完成签到,获得积分10
7秒前
浪子应助大力飞雪采纳,获得10
7秒前
辣辣发布了新的文献求助10
7秒前
小章发布了新的文献求助10
7秒前
8秒前
雨雨发布了新的文献求助10
8秒前
myt完成签到,获得积分20
8秒前
华仔应助cc采纳,获得10
9秒前
9秒前
爆米花完成签到,获得积分20
9秒前
10秒前
xrf完成签到,获得积分10
10秒前
10秒前
morry5007发布了新的文献求助10
10秒前
左丘以云完成签到,获得积分10
10秒前
10秒前
无极微光应助小包子采纳,获得20
10秒前
Akim应助ZIS采纳,获得10
10秒前
威武爆米花完成签到,获得积分10
10秒前
10秒前
坦率惊蛰发布了新的文献求助10
11秒前
科研通AI2S应助LucyLi采纳,获得10
11秒前
专注越彬完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608436
求助须知:如何正确求助?哪些是违规求助? 4693073
关于积分的说明 14876620
捐赠科研通 4717595
什么是DOI,文献DOI怎么找? 2544222
邀请新用户注册赠送积分活动 1509305
关于科研通互助平台的介绍 1472836