材料科学
海水
再分配(选举)
铜
硫化物
无定形固体
金属
非晶态金属
电子
无机化学
化学工程
冶金
合金
结晶学
海洋学
化学
法学
工程类
地质学
物理
政治
量子力学
政治学
作者
Peng Gu,Yidong Song,Yihe Fan,Xin Meng,Lei Zhu,Guofeng Wang,Zhouguanwei Li,Heyuan Sun,Ziyu Zhao,Jinlong Zou
标识
DOI:10.1002/aenm.202403657
摘要
Abstract Rearranging the electronic orbitals of metal sites through interface engineering is the breakthrough for achieving high efficiencies in hydrogen/oxygen evolution reactions (HER/OER) on bimetallic catalysts. Here, via a multistep liquid‐phase synthesis strategy, the crystalline‐amorphous (c‐a) interface is built by coating amorphous oxyhydroxide layer on the surface of crystallized copper(II) sulfide (CuS@MOOH, M = iron (Fe), cobalt (Co) and nickel (Ni)) with an internal cavity. For HER, c‐a interface facilitates the electron filling of the 3d orbitals of Cu, thereby enhancing the coordination between Cu sites (Cu 2+ /Cu + ) and *H and reducing the energy barrier for *H adsorption. For OER, c‐a interface triggers electronic rearrangement in the 3d orbitals of M sites, prompting electron transition from the t2g orbitals to the eg orbitals to achieve a half‐filled state, optimizing the oxygen‐intermediates adsorption on M sites (M 3+ /M 4+ ). Among CuS@MOOH, the as‐marked CuS@CoOOH‐6 exhibits the best activities with ultra‐low overpotentials of 62 mV (HER) and 136 mV (OER). Only 1.52 V is sufficient to power the electrolyzer with CuS@CoOOH‐6‐based cathode/anode, maintaining a ultra‐stable efficiency (96.9 %) over 72 h. Notably, CuS@CoOOH‐6 also exhibits impressive activity/durability for natural seawater electrolysis. This study enhances understanding of the properties and electronic structure of the c‐a interface for water splitting.
科研通智能强力驱动
Strongly Powered by AbleSci AI