Deep guided wave convolution neural network committee-based multi-path fusion diagnosis method for fatigue corner crack

卷积(计算机科学) 人工神经网络 卷积神经网络 路径(计算) 结构工程 融合 计算机科学 人工智能 声学 工程类 物理 语言学 哲学 程序设计语言
作者
Jian Chen,Hutao Jing,Yixing Meng,Shenfang Yuan
出处
期刊:Journal of Intelligent Material Systems and Structures [SAGE]
标识
DOI:10.1177/1045389x241308958
摘要

Accurate diagnosis of crack size is a critical task for guided wave (GW)-based structural health monitoring (SHM). However, fatigue cracks would have complex morphology due to complex structural geometries and loading conditions, in which multiple dimension characteristics, like crack length, depth, and angle are involved. It is challenging to quantitatively evaluate these characteristics with GW signals from a single excitation-sensing path. This paper proposes a novel deep guided wave convolution neural network (CNN) committee-based multi-path GW fusion diagnosis method, aiming at quantitative evaluation of dimension characteristics of the complex fatigue damage. GW signals from multiple excitation-sensing paths are synthesized as a high-dimension input image to enhance the effects of the fatigue crack. Besides, the deep GW-CNN committee is developed for damage quantification, in which each GW-CNN is trained with a portion of the training dataset to reduce the impact of small sample size. The proposed method is validated on fatigue tests of landing gear beam specimens under variable amplitude loading, which is designed referring to the critical region of a real aircraft and its fatigue crack presents as a corner crack. The leave-one-out validation results show the effectiveness of the proposed method, especially improvements in the diagnosis of small cracks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenchenchen发布了新的文献求助10
1秒前
jiojio发布了新的文献求助10
1秒前
李健的粉丝团团长应助111采纳,获得10
1秒前
DanBao应助标致果汁采纳,获得30
1秒前
青栀发布了新的文献求助10
1秒前
和谐诗双完成签到,获得积分10
3秒前
Orange应助大力醉蓝采纳,获得10
3秒前
璃沫完成签到,获得积分10
4秒前
深情安青应助大黄蜂采纳,获得10
4秒前
科研通AI2S应助jiangcy采纳,获得10
4秒前
本基你就会完成签到,获得积分10
4秒前
33发布了新的文献求助30
5秒前
lkl完成签到,获得积分10
8秒前
10秒前
Hello应助青栀采纳,获得10
11秒前
13秒前
15秒前
111发布了新的文献求助10
16秒前
16秒前
sakura发布了新的文献求助10
19秒前
堆起的石头完成签到,获得积分10
19秒前
老丫大侠完成签到 ,获得积分10
21秒前
科研通AI2S应助SB采纳,获得10
25秒前
Polymer72应助和谐诗双采纳,获得10
26秒前
aaa完成签到,获得积分10
26秒前
27秒前
还单身的若蕊完成签到,获得积分10
28秒前
震动的筮完成签到,获得积分10
30秒前
sakura完成签到,获得积分20
32秒前
赘婿应助YYL采纳,获得10
32秒前
震动的筮发布了新的文献求助10
33秒前
田様应助科研通管家采纳,获得10
34秒前
斯文败类应助科研通管家采纳,获得10
34秒前
Violet应助科研通管家采纳,获得10
34秒前
只A不B应助科研通管家采纳,获得10
34秒前
CodeCraft应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
酷波er应助科研通管家采纳,获得10
35秒前
香蕉觅云应助科研通管家采纳,获得10
35秒前
美满疾应助科研通管家采纳,获得10
35秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3349505
求助须知:如何正确求助?哪些是违规求助? 2975556
关于积分的说明 8669922
捐赠科研通 2656364
什么是DOI,文献DOI怎么找? 1454568
科研通“疑难数据库(出版商)”最低求助积分说明 673381
邀请新用户注册赠送积分活动 663847