Deep guided wave convolution neural network committee-based multi-path fusion diagnosis method for fatigue corner crack

卷积(计算机科学) 人工神经网络 卷积神经网络 路径(计算) 结构工程 融合 计算机科学 人工智能 声学 工程类 物理 语言学 哲学 程序设计语言
作者
Jian Chen,Hutao Jing,Yixing Meng,Shenfang Yuan
出处
期刊:Journal of Intelligent Material Systems and Structures [SAGE Publishing]
标识
DOI:10.1177/1045389x241308958
摘要

Accurate diagnosis of crack size is a critical task for guided wave (GW)-based structural health monitoring (SHM). However, fatigue cracks would have complex morphology due to complex structural geometries and loading conditions, in which multiple dimension characteristics, like crack length, depth, and angle are involved. It is challenging to quantitatively evaluate these characteristics with GW signals from a single excitation-sensing path. This paper proposes a novel deep guided wave convolution neural network (CNN) committee-based multi-path GW fusion diagnosis method, aiming at quantitative evaluation of dimension characteristics of the complex fatigue damage. GW signals from multiple excitation-sensing paths are synthesized as a high-dimension input image to enhance the effects of the fatigue crack. Besides, the deep GW-CNN committee is developed for damage quantification, in which each GW-CNN is trained with a portion of the training dataset to reduce the impact of small sample size. The proposed method is validated on fatigue tests of landing gear beam specimens under variable amplitude loading, which is designed referring to the critical region of a real aircraft and its fatigue crack presents as a corner crack. The leave-one-out validation results show the effectiveness of the proposed method, especially improvements in the diagnosis of small cracks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hanleiharry1发布了新的文献求助10
1秒前
Channing_Ho完成签到 ,获得积分10
1秒前
eric888应助辛勤的诗蕊采纳,获得50
2秒前
2秒前
顺利毕业完成签到,获得积分10
2秒前
3秒前
科研小白完成签到,获得积分10
3秒前
Ava应助甜蜜花采纳,获得10
3秒前
上官若男应助Raza采纳,获得10
3秒前
4秒前
Ava应助眼睛大行云采纳,获得10
4秒前
5秒前
xue完成签到 ,获得积分10
5秒前
健忘丹珍完成签到,获得积分10
5秒前
5秒前
5秒前
坤坤蹦蹦跳跳完成签到,获得积分10
7秒前
害羞映容完成签到,获得积分10
7秒前
科研通AI6应助小亮哈哈采纳,获得10
7秒前
7秒前
7秒前
所所应助liriyii采纳,获得10
7秒前
核糖体完成签到,获得积分20
8秒前
9秒前
Lloignyth完成签到,获得积分10
9秒前
赵苏程完成签到,获得积分10
9秒前
9秒前
9秒前
乐乐应助小张醒了采纳,获得10
10秒前
半凡完成签到,获得积分10
10秒前
小小666完成签到 ,获得积分10
10秒前
幽悠梦儿发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
Elin完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
平平无奇发布了新的文献求助10
12秒前
12秒前
青年才俊发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097313
求助须知:如何正确求助?哪些是违规求助? 4309783
关于积分的说明 13428428
捐赠科研通 4137300
什么是DOI,文献DOI怎么找? 2266533
邀请新用户注册赠送积分活动 1269654
关于科研通互助平台的介绍 1205978