已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identification and cognitive function prediction of Alzheimer's disease based on multivariate pattern analysis of hippocampal volumes

多元统计 鉴定(生物学) 多元分析 海马结构 认知 疾病 功能(生物学) 阿尔茨海默病 痴呆 神经科学 心理学 医学 计算机科学 机器学习 内科学 生物 进化生物学 植物
作者
Ziwen Gao,Wanqiu Zhu,Yuqing Li,Wei Ye,Xiao Cheng,Shanshan Zhou,Xiaohu Li,Xiaoshu Li,Yongqiang Yu
出处
期刊:Journal of Alzheimer's Disease [IOS Press]
标识
DOI:10.1177/13872877241296130
摘要

Background Alzheimer's disease (AD) is strongly associated with slowly progressive hippocampal atrophy. Elucidating the relationships between local morphometric changes and disease status for early diagnosis could be aided by machine learning algorithms trained on neuroimaging datasets. Objective This study intended to propose machine learning models for the accurate identification and cognitive function prediction across the AD severity spectrum based on structural magnetic resonance imaging (sMRI) of the bilateral hippocampi. Methods The high-resolution sMRI data of 120 AD dementia patients, 232 amnestic mild cognitive impairment (aMCI) patients, and 206 healthy controls (HCs) were included from the Alzheimer's Disease Neuroimaging Initiative (ADNI). The classification capacity and cognitive predict ability of hippocampal volume was evaluated by multiple pattern analysis using the support vector machine (SVM) and relevance vector regression (RVR) application of the Pattern Recognition for Neuroimaging Toolbox, separately. For validation, the analyses were performed using a biomarker-based regrouping method and another independent local dataset. Results The SVM application produced a total accuracy of 94.17%, 80.85%, and 70.74% and area under receiver operating characteristic curves of 0.97, 0.87, and 0.72 between HC versus AD dementia, HC versus aMCI, and aMCI versus AD dementia classification, respectively. The RVR application significantly predicted the baseline and mean cognitive function at three years of follow-up. Qualitatively consistent results were obtained using different regrouping method and the local dataset. Conclusions The machine learning methods based on the bilateral hippocampi distinguished across the AD severity spectrum and predicted the baseline and the longitudinal cognitive function with greater accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
6秒前
11秒前
zzzzzttt完成签到 ,获得积分10
12秒前
谨慎青亦完成签到 ,获得积分10
15秒前
离轩完成签到 ,获得积分10
16秒前
科目三应助容止采纳,获得10
16秒前
17秒前
和谐蛋蛋完成签到,获得积分10
19秒前
19秒前
20秒前
赘婿应助科研通管家采纳,获得20
20秒前
赘婿应助科研通管家采纳,获得10
20秒前
yyymmma应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
WMT关注了科研通微信公众号
22秒前
小丸子发布了新的文献求助10
23秒前
淡定幻竹关注了科研通微信公众号
25秒前
Zx完成签到 ,获得积分10
27秒前
飞飞飞fff完成签到 ,获得积分10
37秒前
37秒前
十里八乡俊俏后生完成签到 ,获得积分10
40秒前
白芍发布了新的文献求助10
40秒前
41秒前
爱听歌的紫菜完成签到,获得积分10
41秒前
42秒前
容止发布了新的文献求助10
44秒前
勺子爱西瓜完成签到,获得积分10
44秒前
WMT发布了新的文献求助30
46秒前
46秒前
土豆你个西红柿完成签到 ,获得积分10
46秒前
西红柿炒番茄应助ggg采纳,获得50
47秒前
47秒前
执着的如容完成签到,获得积分10
48秒前
moonlimb完成签到 ,获得积分10
49秒前
52秒前
satohoang发布了新的文献求助10
53秒前
前程似锦完成签到 ,获得积分10
53秒前
搜集达人应助凌代萱采纳,获得10
58秒前
钮祜禄萱完成签到 ,获得积分10
58秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150395
求助须知:如何正确求助?哪些是违规求助? 2801716
关于积分的说明 7845638
捐赠科研通 2459139
什么是DOI,文献DOI怎么找? 1309085
科研通“疑难数据库(出版商)”最低求助积分说明 628634
版权声明 601727