Identification and cognitive function prediction of Alzheimer's disease based on multivariate pattern analysis of hippocampal volumes

多元统计 神经影像学 阿尔茨海默病神经影像学倡议 支持向量机 认知 磁共振成像 疾病 人工智能 阿尔茨海默病 萎缩 痴呆 神经科学 心理学 模式识别(心理学) 医学 计算机科学 认知障碍 机器学习 内科学 放射科
作者
Ziwen Gao,Wanqiu Zhu,Yuqing Li,Wei Ye,Xiao Cheng,Shanshan Zhou,Xiaohu Li,Xiaoshu Li,Yongqiang Yu
出处
期刊:Journal of Alzheimer's Disease [IOS Press]
被引量:1
标识
DOI:10.1177/13872877241296130
摘要

Background Alzheimer's disease (AD) is strongly associated with slowly progressive hippocampal atrophy. Elucidating the relationships between local morphometric changes and disease status for early diagnosis could be aided by machine learning algorithms trained on neuroimaging datasets. Objective This study intended to propose machine learning models for the accurate identification and cognitive function prediction across the AD severity spectrum based on structural magnetic resonance imaging (sMRI) of the bilateral hippocampi. Methods The high-resolution sMRI data of 120 AD dementia patients, 232 amnestic mild cognitive impairment (aMCI) patients, and 206 healthy controls (HCs) were included from the Alzheimer's Disease Neuroimaging Initiative (ADNI). The classification capacity and cognitive predict ability of hippocampal volume was evaluated by multiple pattern analysis using the support vector machine (SVM) and relevance vector regression (RVR) application of the Pattern Recognition for Neuroimaging Toolbox, separately. For validation, the analyses were performed using a biomarker-based regrouping method and another independent local dataset. Results The SVM application produced a total accuracy of 94.17%, 80.85%, and 70.74% and area under receiver operating characteristic curves of 0.97, 0.87, and 0.72 between HC versus AD dementia, HC versus aMCI, and aMCI versus AD dementia classification, respectively. The RVR application significantly predicted the baseline and mean cognitive function at three years of follow-up. Qualitatively consistent results were obtained using different regrouping method and the local dataset. Conclusions The machine learning methods based on the bilateral hippocampi distinguished across the AD severity spectrum and predicted the baseline and the longitudinal cognitive function with greater accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兜里全是糖完成签到,获得积分10
1秒前
可爱的函函应助雪色浪漫采纳,获得10
3秒前
Hello应助lay采纳,获得10
4秒前
抹茶牛奶配布丁完成签到 ,获得积分10
8秒前
ding应助eye采纳,获得20
9秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
Orange应助糖糖采纳,获得10
13秒前
小蘑菇应助mianbao采纳,获得10
14秒前
15秒前
在下天池宫人间行走完成签到,获得积分10
15秒前
cooyuan发布了新的文献求助10
15秒前
qiqi完成签到,获得积分0
16秒前
hanna发布了新的文献求助10
16秒前
任无施发布了新的文献求助80
18秒前
18秒前
jun发布了新的文献求助10
19秒前
19秒前
19秒前
完美世界应助su采纳,获得10
20秒前
风中戎完成签到,获得积分10
22秒前
23秒前
23秒前
ED应助hanna采纳,获得10
23秒前
24秒前
希望天下0贩的0应助Sirila采纳,获得10
24秒前
25秒前
lidayu完成签到,获得积分10
26秒前
乐观小蕊完成签到 ,获得积分10
26秒前
66发布了新的文献求助10
26秒前
儒雅采文发布了新的文献求助10
29秒前
jinggaier发布了新的文献求助10
30秒前
orixero应助packet采纳,获得10
32秒前
32秒前
共享精神应助66采纳,获得10
32秒前
一三五七九完成签到 ,获得积分10
32秒前
33秒前
greenf发布了新的文献求助10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959821
求助须知:如何正确求助?哪些是违规求助? 3506056
关于积分的说明 11127696
捐赠科研通 3237994
什么是DOI,文献DOI怎么找? 1789429
邀请新用户注册赠送积分活动 871773
科研通“疑难数据库(出版商)”最低求助积分说明 803021