Survival causal rule ensemble method considering the main effect for estimating heterogeneous treatment effects

可解释性 计算机科学 机器学习 灵活性(工程) 人工智能 估计 协议(科学) 数据挖掘 统计 医学 数学 替代医学 管理 病理 经济
作者
Ke Wan,Kensuke Tanioka,Toshio Shimokawa
出处
期刊:Statistics in Medicine [Wiley]
卷期号:43 (27): 5234-5271
标识
DOI:10.1002/sim.10180
摘要

With an increasing focus on precision medicine in medical research, numerous studies have been conducted in recent years to clarify the relationship between treatment effects and patient characteristics. The treatment effects for patients with different characteristics are always heterogeneous, and therefore, various heterogeneous treatment effect machine learning estimation methods have been proposed owing to their flexibility and high estimation accuracy. However, most machine learning methods rely on black‐box models, preventing direct interpretation of the relationship between patient characteristics and treatment effects. Moreover, most of these studies have focused on continuous or binary outcomes, although survival outcomes are also important in medical research. To address these challenges, we propose a heterogeneous treatment effect estimation method for survival data based on RuleFit, an interpretable machine learning method. Numerical simulation results confirmed that the prediction performance of the proposed method was comparable to that of existing methods. We also applied a dataset from an HIV study, the AIDS Clinical Trials Group Protocol 175 dataset, to illustrate the interpretability of the proposed method using real data. Consequently, the proposed survival causal rule ensemble method provides an interpretable model with sufficient estimation accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kira完成签到,获得积分10
1秒前
1秒前
科研毛毛虫完成签到,获得积分10
2秒前
sally完成签到 ,获得积分10
2秒前
漂亮白枫发布了新的文献求助10
3秒前
Erica完成签到,获得积分10
6秒前
英姑应助lovesxj941采纳,获得10
6秒前
可塔朵完成签到,获得积分10
6秒前
FashionBoy应助天真小甜瓜采纳,获得10
6秒前
潇洒清炎完成签到,获得积分10
6秒前
7秒前
8秒前
CipherSage应助baekhyun采纳,获得10
8秒前
zero完成签到 ,获得积分10
9秒前
LinWI完成签到,获得积分10
9秒前
11秒前
12秒前
zhaohu47完成签到,获得积分10
13秒前
14秒前
共享精神应助漂亮白枫采纳,获得10
14秒前
membrane应助穆觅云采纳,获得10
15秒前
小田发布了新的文献求助10
16秒前
Akim应助俭朴的猫咪采纳,获得10
18秒前
长颈鹿完成签到 ,获得积分10
19秒前
19秒前
20秒前
20秒前
青安完成签到,获得积分10
22秒前
abc完成签到 ,获得积分10
23秒前
24秒前
快乐妖丽完成签到,获得积分10
25秒前
25秒前
miraitowa发布了新的文献求助30
25秒前
卡司发布了新的文献求助10
26秒前
baekhyun发布了新的文献求助10
28秒前
28秒前
火山完成签到,获得积分10
28秒前
曾丹发布了新的文献求助20
29秒前
52Hz完成签到,获得积分10
29秒前
烊驼发布了新的文献求助10
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299938
求助须知:如何正确求助?哪些是违规求助? 2934780
关于积分的说明 8470445
捐赠科研通 2608342
什么是DOI,文献DOI怎么找? 1424154
科研通“疑难数据库(出版商)”最低求助积分说明 661873
邀请新用户注册赠送积分活动 645601