亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection of group-housed pigs feeding behavior using deep learning and edge devices

群(周期表) GSM演进的增强数据速率 人工智能 小组学习 摄食行为 动物科学 计算机科学 生物 数学 物理 数学教育 量子力学
作者
Junjie Gong,Minghui Deng,Guiping Li,Pengcheng Zheng,Yanling Yin
出处
期刊:Measurement Science and Technology [IOP Publishing]
被引量:2
标识
DOI:10.1088/1361-6501/ad9f8b
摘要

Abstract The detection of feed behavior at pig farms is essential in monitoring the welfare and health of pigs. Addressing the low automation level of feeding behavior detection in group-housed pig farming, this study proposes a lightweight feeding behavior detection model, GAB-YOLO, based on YOLOv8s. The model employs GhostNet with a Convolution and Self-Attention Mixed Module (ACMix) as the back-bone, enhancing feature extraction capability while reducing parameters. Wise-IoU is utilized as the bounding box loss function to improve sensitivity to piglets. To integrate features of pigs with different body types, a Feature Fusion Module called Bi-directional Multi Feature Pyramid Network (BMFPN) is proposed as the neck part of the model. Experimental results demonstrate that the improved model achieves detection accuracies of 98.40% for drinking behavior and 98.66% for eating behavior in group-housed pigs, representing improvements of 2.79% and 2.99%, respectively, over the original YOLOv8s algorithm, with a 14.5% reduction in parameters. The Deep Simple Online and Realtime Tracking (DeepSORT) algorithm is integrated into the improved model to address the issue of inaccurate video behavior judgment by YOLO, forming the lightweight model GAB-YOLO-DeepSORT. Finally, GAB-YOLO-DeepSORT is deployed on the NVIDIA Jetson Nano. The practical operation on the Jetson Nano shows that the proposed model can track multiple targets for pigs of different sizes and varieties in a group-housed environment, thus ensuring the accuracy of pig feeding behavior recognition and providing support for the subsequent establishment of pig health systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
15秒前
26秒前
忧郁小鸽子完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
47秒前
cadnash完成签到,获得积分10
1分钟前
1分钟前
善学以致用应助桃欣采纳,获得10
1分钟前
馆长应助科研通管家采纳,获得10
1分钟前
馆长应助科研通管家采纳,获得10
1分钟前
1分钟前
iman完成签到,获得积分10
2分钟前
共享精神应助Dreamer.采纳,获得10
2分钟前
愉快的花卷完成签到,获得积分10
2分钟前
田様应助愉快的花卷采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
Dreamer.发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
cqhecq发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Virtual应助科研通管家采纳,获得10
3分钟前
桃欣发布了新的文献求助10
3分钟前
桃欣完成签到,获得积分10
4分钟前
5分钟前
FashionBoy应助guhuihaozi采纳,获得10
5分钟前
zzz完成签到,获得积分10
5分钟前
深情安青应助Dreamer.采纳,获得10
5分钟前
5分钟前
馆长应助科研通管家采纳,获得10
5分钟前
馆长应助科研通管家采纳,获得10
5分钟前
伏城完成签到 ,获得积分10
5分钟前
共享精神应助王大纯采纳,获得10
6分钟前
王大纯完成签到,获得积分20
6分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4595660
求助须知:如何正确求助?哪些是违规求助? 4007972
关于积分的说明 12408710
捐赠科研通 3686659
什么是DOI,文献DOI怎么找? 2032005
邀请新用户注册赠送积分活动 1065231
科研通“疑难数据库(出版商)”最低求助积分说明 950587