Detection of group-housed pigs feeding behavior using deep learning and edge devices

群(周期表) GSM演进的增强数据速率 人工智能 小组学习 摄食行为 动物科学 计算机科学 生物 数学 物理 数学教育 量子力学
作者
Junjie Gong,Minghui Deng,Guiping Li,Pengcheng Zheng,Yanling Yin
出处
期刊:Measurement Science and Technology [IOP Publishing]
被引量:2
标识
DOI:10.1088/1361-6501/ad9f8b
摘要

Abstract The detection of feed behavior at pig farms is essential in monitoring the welfare and health of pigs. Addressing the low automation level of feeding behavior detection in group-housed pig farming, this study proposes a lightweight feeding behavior detection model, GAB-YOLO, based on YOLOv8s. The model employs GhostNet with a Convolution and Self-Attention Mixed Module (ACMix) as the back-bone, enhancing feature extraction capability while reducing parameters. Wise-IoU is utilized as the bounding box loss function to improve sensitivity to piglets. To integrate features of pigs with different body types, a Feature Fusion Module called Bi-directional Multi Feature Pyramid Network (BMFPN) is proposed as the neck part of the model. Experimental results demonstrate that the improved model achieves detection accuracies of 98.40% for drinking behavior and 98.66% for eating behavior in group-housed pigs, representing improvements of 2.79% and 2.99%, respectively, over the original YOLOv8s algorithm, with a 14.5% reduction in parameters. The Deep Simple Online and Realtime Tracking (DeepSORT) algorithm is integrated into the improved model to address the issue of inaccurate video behavior judgment by YOLO, forming the lightweight model GAB-YOLO-DeepSORT. Finally, GAB-YOLO-DeepSORT is deployed on the NVIDIA Jetson Nano. The practical operation on the Jetson Nano shows that the proposed model can track multiple targets for pigs of different sizes and varieties in a group-housed environment, thus ensuring the accuracy of pig feeding behavior recognition and providing support for the subsequent establishment of pig health systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
激动的尔烟完成签到,获得积分10
刚刚
SciGPT应助LJ采纳,获得10
刚刚
1秒前
半柚完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
羲和发布了新的文献求助10
3秒前
bzz发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
科研通AI6应助djcdhdncmsk采纳,获得10
5秒前
maojin发布了新的文献求助10
5秒前
uwasa完成签到,获得积分10
5秒前
一枝杷枇完成签到,获得积分20
5秒前
6秒前
6秒前
空谷新苗发布了新的文献求助10
6秒前
6秒前
6秒前
情怀应助l991215y采纳,获得10
6秒前
lkgxwpf发布了新的文献求助10
7秒前
wenwenjlu完成签到,获得积分20
7秒前
好困发布了新的文献求助10
7秒前
7秒前
7秒前
koto应助大半个菜鸟采纳,获得100
8秒前
完美世界应助大半个菜鸟采纳,获得10
8秒前
8秒前
8秒前
青石发布了新的文献求助10
8秒前
炸弹完成签到,获得积分20
8秒前
9秒前
无算浮白完成签到,获得积分10
9秒前
tutou完成签到,获得积分10
9秒前
hu970完成签到,获得积分20
9秒前
10秒前
10秒前
11秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442517
求助须知:如何正确求助?哪些是违规求助? 4552741
关于积分的说明 14238372
捐赠科研通 4474018
什么是DOI,文献DOI怎么找? 2451837
邀请新用户注册赠送积分活动 1442715
关于科研通互助平台的介绍 1418593