Machine-Learning-Accelerated Surface Exploration of Reconstructed BiVO4(010) and Characterization of Their Aqueous Interfaces

化学 表征(材料科学) 水溶液 曲面(拓扑) 纳米技术 化学工程 物理化学 几何学 材料科学 数学 工程类
作者
Yonghyuk Lee,Taehun Lee
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
标识
DOI:10.1021/jacs.4c17739
摘要

Understanding the semiconductor-electrolyte interface in photoelectrochemical (PEC) systems is crucial for optimizing the stability and reactivity. Despite the challenges in establishing reliable surface structure models during PEC cycles, this study explores the complex surface reconstructions of BiVO4(010) by employing a computational workflow integrated with a state-of-the-art active learning protocol for a machine-learning interatomic potential and global optimization techniques. Within this workflow, we identified 494 unique reconstructed surface structures that surpass conventional chemical intuition-driven, bulk-truncated models. After constructing the surface Pourbaix diagram under Bi- and V-rich electrolyte conditions using density functional theory and hybrid functional calculations, we proposed structural models for the experimentally observed Bi-rich BiVO4 surfaces. By performing hybrid functional molecular dynamics simulations with the explicit treatment of water molecules on selected reconstructed BiVO4(010) surfaces, we observed water dissociation from molecular water. Our findings demonstrate significant water dissociation on reconstructed Bi-rich surfaces, highlighting the critical role of bare and undercoordinated Bi sites (only observable in reconstructed surfaces) in driving hydration processes. Our work establishes a foundation for understanding the role of complex, reconstructed Bi surfaces in surface hydration and reactivity. Additionally, our theoretical framework for exploring surface structures and predicting reactivity in multicomponent oxides offers a precise approach to describing complex surface and interface processes in PEC systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccc完成签到,获得积分10
刚刚
科研通AI5应助huihui采纳,获得10
1秒前
桐桐应助梦蝴蝶采纳,获得10
1秒前
微笑寒烟发布了新的文献求助10
2秒前
2秒前
Mp4发布了新的文献求助10
2秒前
汉堡包应助调皮小土豆采纳,获得10
5秒前
soudayo发布了新的文献求助10
5秒前
doddy发布了新的文献求助10
6秒前
龙妍琳完成签到,获得积分10
7秒前
QQ发布了新的文献求助30
7秒前
科研通AI5应助雀巢咖啡采纳,获得30
7秒前
无心的胡萝卜完成签到,获得积分10
8秒前
8秒前
JamesPei应助厦屿采纳,获得10
8秒前
香蕉觅云应助小痴采纳,获得10
8秒前
隐形曼青应助佳期如梦采纳,获得10
9秒前
曾经的少年完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
华仔应助大婷子采纳,获得10
12秒前
隐形曼青应助沉静若山采纳,获得10
12秒前
Wangyixuan发布了新的文献求助10
12秒前
yao发布了新的文献求助10
12秒前
12秒前
咋回事发布了新的文献求助10
13秒前
14秒前
大气山兰应助叮叮当当猫采纳,获得10
14秒前
共享精神应助黑柴是柴采纳,获得10
14秒前
15秒前
小马甲应助Moonpie采纳,获得10
16秒前
Fang发布了新的文献求助10
16秒前
17秒前
17秒前
慢歌完成签到 ,获得积分10
17秒前
路茄发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515510
求助须知:如何正确求助?哪些是违规求助? 3097850
关于积分的说明 9236939
捐赠科研通 2792825
什么是DOI,文献DOI怎么找? 1532705
邀请新用户注册赠送积分活动 712209
科研通“疑难数据库(出版商)”最低求助积分说明 707201