Tackling Algorithmic Bias and Promoting Transparency in Health Datasets: The STANDING Together Consensus Recommendations

透明度(行为) 数据科学 计算机科学 互联网隐私 计算机安全
作者
Joseph Alderman,Joanne Palmer,Elinor Laws,Melissa D. McCradden,Johan Ordish,Marzyeh Ghassemi,Stephen Pfohl,Negar Rostamzadeh,Heather Cole-Lewis,Ben Glocker,Melanie Calvert,Tom Pollard,Jaspret Gill,Jacqui Gath,Ade Adebajo,Jude Beng,Cheuk Wing Leung,Stephanie Kuku,L. J. Farmer,Rubeta Matin,Bilal A. Mateen,Francis McKay,Katherine Heller,Alan Karthikesalingam,Darren Treanor,Maxine Mackintosh,Lauren Oakden‐Rayner,Russell Pearson,Arjun K. Manrai,Puja Myles,Judit Kumuthini,Zoher Kapacee,Neil J. Sebire,Lama Nazer,Jarrel Seah,Ashley Akbari,Lewis E. Berman,Judy Wawira Gichoya,Lorenzo Righetto,Diana Samuel,William Wasswa,Maria Charalambides,Anmol Arora,Sameer Pujari,Charlotte Summers,Elizabeth Sapey,Stephen Wilkinson,Vishal Thakker,Alastair K. Denniston,Xiaoxuan Liu
标识
DOI:10.1056/aip2401088
摘要

Without careful dissection of the ways in which biases can be encoded into artificial intelligence (AI) health technologies, there is a risk of perpetuating existing health inequalities at scale. One major source of bias is the data that underpins such technologies. The STANDING Together recommendations aim to encourage transparency regarding limitations of health datasets and proactive evaluation of their effect across population groups. Draft recommendation items were informed by a systematic review and stakeholder survey. The recommendations were developed using a Delphi approach, supplemented by a public consultation and international interview study. Overall, more than 350 representatives from 58 countries provided input into this initiative. 194 Delphi participants from 25 countries voted and provided comments on 32 candidate items across three electronic survey rounds and one in-person consensus meeting. The 29 STANDING Together consensus recommendations are presented here in two parts. Recommendations for Documentation of Health Datasets provide guidance for dataset curators to enable transparency around data composition and limitations. Recommendations for Use of Health Datasets aim to enable identification and mitigation of algorithmic biases that might exacerbate health inequalities. These recommendations are intended to prompt proactive inquiry rather than acting as a checklist. We hope to raise awareness that no dataset is free of limitations, so transparent communication of data limitations should be perceived as valuable, and absence of this information as a limitation. We hope that adoption of the STANDING Together recommendations by stakeholders across the AI health technology lifecycle will enable everyone in society to benefit from technologies which are safe and effective. (Funded by The NHS AI Lab and The Health Foundation, and supported by the National Institute for Health and Care Research [NIHR].)

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗映寒发布了新的文献求助10
刚刚
坚韧的咯咯完成签到,获得积分20
1秒前
领导范儿应助yin采纳,获得10
1秒前
小学生的练习簿完成签到,获得积分10
2秒前
5秒前
6秒前
8秒前
大模型应助judy采纳,获得10
9秒前
上岸的元气少女完成签到,获得积分20
10秒前
哈哈完成签到 ,获得积分10
10秒前
龙超人发布了新的文献求助10
12秒前
zhoujunjie发布了新的文献求助20
12秒前
小王同学完成签到,获得积分10
13秒前
sissiarno应助消潇采纳,获得30
15秒前
小王同学发布了新的文献求助10
15秒前
18秒前
20秒前
xiaohei完成签到,获得积分10
21秒前
GGBOND完成签到,获得积分10
21秒前
险胜应助科研通管家采纳,获得10
22秒前
星辰大海应助科研通管家采纳,获得10
22秒前
Ava应助科研通管家采纳,获得10
22秒前
huo应助科研通管家采纳,获得10
22秒前
上官若男应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
所所应助科研通管家采纳,获得20
22秒前
Termin完成签到,获得积分20
23秒前
24秒前
思源应助高大的河马采纳,获得10
25秒前
知性的真完成签到,获得积分10
26秒前
JamesPei应助蒋蒋采纳,获得10
28秒前
知性的真发布了新的文献求助10
29秒前
Ava应助可爱铁身采纳,获得30
29秒前
31秒前
feiqi发布了新的文献求助30
32秒前
34秒前
Wyett完成签到,获得积分10
35秒前
Haixia发布了新的文献求助10
38秒前
善学以致用应助xudou采纳,获得30
38秒前
高大的河马完成签到,获得积分10
39秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309791
求助须知:如何正确求助?哪些是违规求助? 2943034
关于积分的说明 8512084
捐赠科研通 2618067
什么是DOI,文献DOI怎么找? 1430810
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649469