Social isolation and depressive symptoms among older adults with different functional status in China: A latent class analysis

潜在类模型 社会孤立 心理学 中国 抑郁症状 分离(微生物学) 临床心理学 社会阶层 萧条(经济学) 精神科 认知 生物 生物信息学 地理 统计 数学 宏观经济学 考古 政治学 法学 经济
作者
Xuan Liu,J. Chen,Bo Gao,Wan-Jia Zhang
出处
期刊:Journal of Affective Disorders [Elsevier BV]
标识
DOI:10.1016/j.jad.2025.01.156
摘要

Social isolation is considered a risk factor for depression in older adults. Since there may be heterogeneity in the experience of social isolation, we aimed to investigate social isolation patterns and their association with depressive symptoms, for older adults with different functional status separately. This study used data from the fifth wave of the China Health and Retirement Longitudinal Study (CHARLS). A total of 8262 participants, defined as older adults aged 60 years and above, were included in the analysis, comprising 49.9 % (n = 4124) men and 50.1 % (n = 4138) women. Latent class analysis was conducted to identify social isolation patterns. Binary logistic regression was used to estimate the association between latent classes and depressive symptoms. Two distinct classes were identified in participants with functional dependency and three classes were identified in participants without functional dependency. The severely isolated with minimal family and social contact group was associated with a higher risk of depressive symptoms in both subgroups (participants with functional dependency: OR = 1.319, 95%CI: 1.032-1.686; participants without functional dependency: OR = 1.537, 95%CI: 1.209-1.953). No difference was found in the risk of depressive symptoms between the moderately isolated with family contact group and the low isolated group among participants without functional dependency (OR = 1.020, 95%CI: 0.83-1.252). Risk of depressive symptoms varies with different social isolation patterns among older people with different functional status.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xx完成签到,获得积分20
刚刚
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
中药中医科研狗1123完成签到,获得积分10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
科研通AI5应助LHL采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
2秒前
ding应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
nozero应助科研通管家采纳,获得30
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得50
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
nozero应助科研通管家采纳,获得30
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
3秒前
cc应助科研通管家采纳,获得10
3秒前
悦耳莫言发布了新的文献求助10
3秒前
Opse完成签到,获得积分10
4秒前
鱼不存在完成签到 ,获得积分10
5秒前
莫愁一舞完成签到,获得积分10
5秒前
6秒前
6秒前
黄昏完成签到,获得积分10
6秒前
Owen应助mu采纳,获得10
7秒前
好困应助Dreamable采纳,获得10
7秒前
7秒前
清脆靳完成签到,获得积分10
8秒前
8秒前
牛肉面完成签到 ,获得积分10
9秒前
阳和启蛰完成签到 ,获得积分10
9秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733775
求助须知:如何正确求助?哪些是违规求助? 3278009
关于积分的说明 10006192
捐赠科研通 2994159
什么是DOI,文献DOI怎么找? 1642937
邀请新用户注册赠送积分活动 780727
科研通“疑难数据库(出版商)”最低求助积分说明 748987