Antibiofilm treatment, particularly drug-containing wound healing dressings, does not typically penetrate the robust protective extracellular polymeric substance of biofilm and eradicate the bacteria. Here, a rational design of nitric oxide (NO) donor N,N'-di-sec-butyl-N,N'-dinitroso-1,4-phenylenediamine (BNN6)-based injectable hydrogel, is reported in which the NO release can be triggered by a photothermal effect owing to semiconducting perylene diimide (PDI) J-aggregation fibers. The synthetic PDI derivatives self-assembling into 0D nanoparticles and then aggregating to 1D J fiber is accompanied by absorbance red-shifting from 700 to 790 nm and then to 852 nm. After encapsulating BNN6, a "sandwich roll" (SR) like structure is evenly crosslinked into an injectable hydrogel (SRH) exhibiting a high photothermal convenience efficiency of 72%, which enables the SRH to achieve highly efficient photocontrol NO release. The SRH shows excellent injectability, shape adaptability, and effective antibacterial efficacy over 99% to the E.coli and S. aureus. and remarkable in vivo antibiofilm efficiency of 99.58% by laser irradiation. Furthermore, the synergistic treatment displays the ability to eliminate inflammation, facilitate angiogenesis, and promote collagen deposition, thereby significantly stimulating the healing process of wounds. The semiconducting J-aggregation injectable hydrogel can be a versatile strategy for the treatment of biofilm.