Identifying urban villages: an attention-based deep learning approach that integrates remote sensing and street-level images

地理 可解释性 遥感 卷积神经网络 特征(语言学) 情态动词 计算机科学 特征提取 人工智能 运输工程 工程类 语言学 哲学 化学 高分子化学
作者
Sheng Hu,Zhonglin Yang,Hanfa Xing,Zihao Chen,Wenkai Liu,Zurui Ao,Yefei Liu,Jiaju Li
出处
期刊:International Journal of Geographical Information Science [Taylor & Francis]
卷期号:: 1-23
标识
DOI:10.1080/13658816.2024.2442096
摘要

Urbanization has been a driving force for economic growth, yet it has also caused the emergence of informal urban settlements such as urban villages (UVs), which are characterized by issues such as arbitrary land use, high-density construction, and insufficient infrastructure. In previous studies on UV detection, the semantic imbalance and feature interaction among cross-modal data have not been comprehensively considered, impacting the accuracy and interpretability of the results. In this work, a cross-modal fusion framework is proposed that integrates high-resolution remote sensing and street view images for UV detection. First, convolutional neural networks (ResNet-50) are used for feature extraction from both remote sensing and street view images. Then, an inner product channel attention module is used to dynamically adjust weights while considering multiangle views of street view images. A cross-modal feature fusion module that incorporates dilation convolution and a global-based feature fusion block is used to enhance feature interaction and fusion. The method has an overall accuracy (OA) of 0.975 for UV classification in a case study of the Guangzhou–Foshan metropolitan area in China, outperforming a set of baseline methods. The integration of remote sensing and street view images improves the OA value by approximately 2%. This work enhances the understanding of the distribution of UVs via both top-down and ground-level view data in an automatic and efficient way, providing urban planners with valuable insights to accurately identify UVs and support targeted, sustainable urban renewal aligned with the SDGs for inclusive, resilient cities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
reny_o完成签到,获得积分10
1秒前
大方觅珍完成签到,获得积分20
2秒前
2秒前
万能图书馆应助瓜瓜采纳,获得10
2秒前
3秒前
12306完成签到,获得积分20
4秒前
努力搞科研完成签到,获得积分10
4秒前
4秒前
完美世界应助会会采纳,获得10
5秒前
5秒前
样样发布了新的文献求助10
5秒前
幸福时光完成签到,获得积分10
6秒前
6秒前
6秒前
协奏曲完成签到 ,获得积分10
6秒前
英俊的铭应助受伤幻桃采纳,获得10
7秒前
mystryjoker发布了新的文献求助10
7秒前
无花果应助bjbbh采纳,获得30
8秒前
想逃离发布了新的文献求助10
8秒前
李爱国应助小豆豆采纳,获得10
8秒前
8秒前
科目三应助hjg采纳,获得10
8秒前
耍酷亦玉完成签到,获得积分0
9秒前
李爱国应助小姚在忙采纳,获得10
9秒前
简单的如风完成签到,获得积分20
9秒前
阿雷发布了新的文献求助10
10秒前
10秒前
123完成签到,获得积分10
10秒前
10秒前
酷波er应助Nobody采纳,获得10
10秒前
11秒前
wwww发布了新的文献求助10
11秒前
在水一方应助12306采纳,获得30
11秒前
11秒前
天真元冬完成签到,获得积分10
12秒前
自然涵易完成签到,获得积分10
12秒前
12秒前
ven发布了新的文献求助10
12秒前
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979242
求助须知:如何正确求助?哪些是违规求助? 3523187
关于积分的说明 11216570
捐赠科研通 3260615
什么是DOI,文献DOI怎么找? 1800151
邀请新用户注册赠送积分活动 878854
科研通“疑难数据库(出版商)”最低求助积分说明 807099