Identifying urban villages: an attention-based deep learning approach that integrates remote sensing and street-level images

地理 遥感 地图学 深度学习 计算机科学 人工智能
作者
Sheng Hu,Zhonglin Yang,Hanfa Xing,Zihao Chen,Wenkai Liu,Zurui Ao,Yefei Liu,Jiaju Li
出处
期刊:International Journal of Geographical Information Science [Informa]
卷期号:: 1-23
标识
DOI:10.1080/13658816.2024.2442096
摘要

Urbanization has been a driving force for economic growth, yet it has also caused the emergence of informal urban settlements such as urban villages (UVs), which are characterized by issues such as arbitrary land use, high-density construction, and insufficient infrastructure. In previous studies on UV detection, the semantic imbalance and feature interaction among cross-modal data have not been comprehensively considered, impacting the accuracy and interpretability of the results. In this work, a cross-modal fusion framework is proposed that integrates high-resolution remote sensing and street view images for UV detection. First, convolutional neural networks (ResNet-50) are used for feature extraction from both remote sensing and street view images. Then, an inner product channel attention module is used to dynamically adjust weights while considering multiangle views of street view images. A cross-modal feature fusion module that incorporates dilation convolution and a global-based feature fusion block is used to enhance feature interaction and fusion. The method has an overall accuracy (OA) of 0.975 for UV classification in a case study of the Guangzhou–Foshan metropolitan area in China, outperforming a set of baseline methods. The integration of remote sensing and street view images improves the OA value by approximately 2%. This work enhances the understanding of the distribution of UVs via both top-down and ground-level view data in an automatic and efficient way, providing urban planners with valuable insights to accurately identify UVs and support targeted, sustainable urban renewal aligned with the SDGs for inclusive, resilient cities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
赘婿应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
2秒前
不懈奋进应助科研通管家采纳,获得30
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
云上人发布了新的文献求助10
2秒前
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
2秒前
Akim应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
3秒前
FelixFelicis完成签到,获得积分10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
3秒前
李健应助科研通管家采纳,获得10
3秒前
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
ddddddd完成签到 ,获得积分10
4秒前
sqdr2完成签到,获得积分10
4秒前
wnwn发布了新的文献求助10
4秒前
5秒前
靓丽月饼发布了新的文献求助10
6秒前
feilei发布了新的文献求助10
6秒前
7秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3253860
求助须知:如何正确求助?哪些是违规求助? 2896294
关于积分的说明 8291677
捐赠科研通 2565096
什么是DOI,文献DOI怎么找? 1392804
科研通“疑难数据库(出版商)”最低求助积分说明 652299
邀请新用户注册赠送积分活动 629712