Identification of intrinsic hepatotoxic compounds in Polygonum multiflorum Thunb. using machine-learning methods

支持向量机 人工智能 传统医学 生物信息学 机器学习 草本植物 鉴定(生物学) 医学 草药 化学 生物 计算机科学 生物化学 植物 基因
作者
Xiaowen Hu,Tingting Du,Shuguang Dai,Feng Wei,Xiaoguang Chen,Shuang‐Cheng Ma
出处
期刊:Journal of Ethnopharmacology [Elsevier]
卷期号:298: 115620-115620 被引量:4
标识
DOI:10.1016/j.jep.2022.115620
摘要

Polygonum multiflorum Thunb. (PM) is a herb, extracts of which have been used as Chinese medicine for years. Although it is believed to be beneficial to the liver, heart, and kidneys, it causes idiosyncratic drug-induced liver injury (DILI).We propose that the intrinsic DILI caused by natural products in PM (NPPM) is an important complementary mechanism to PM-related herb-induced liver injury, and aim to identify the ingredients with high DILI potential by machine learning methods.One hundred and ninety-seven NPPM were collected from the literature to identify the intrinsic hepatotoxic compounds. Additionally, a DILI-labeled dataset consisting of 2384 compounds was collected and randomly split into training and test sets. A diparametric optimization method was developed to tune the parameters of extended-connectivity fingerprints (ECFPs), Rdkit, and atom-pair fingerprints as well as those of machine-learning (ML) algorithms. Subsequently, K means were employed to cluster the NPPM that were predicted to have a high DILI risk. An in vitro cell-viability assay was performed using HepaRG cells to validate the prediction results.ECFPs with the top 35% of features ranked by the F-value with support vector machine (SVM) yielded the best performance. The optimized SVM model achieved an accuracy of 0.761 and recall value of 0.834 on the test dataset. The silico screening for NPPM resulted in 47 ingredients with high DILI potential, which were clustered into six groups based on the elbow method. A representative subgroup that contained 21 ingredients, of which two dianthrones exhibited the lowest IC50 value (0.7-0.9 μM) and anthraquinones showed moderate toxicity (15-25 μM), was constructed.Using ML methods and in vitro screening, two classes of compounds, dianthrones and anthraquinones, were predicted and validated to have a high risk of DILI. The diparametric optimization method used in this study could provide a useful and powerful tool to screen toxicants for large datasets and is available at https://github.com/dreadlesss/Hepatotoxicity_predictor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大饼子完成签到 ,获得积分10
1秒前
桐桐应助穆一手采纳,获得10
1秒前
快乐大炮发布了新的文献求助10
3秒前
Kyogoku完成签到,获得积分10
3秒前
打打应助zhuzhuxia采纳,获得30
6秒前
学生发布了新的文献求助10
7秒前
ZLX完成签到,获得积分10
7秒前
Eri_SCI完成签到 ,获得积分10
8秒前
9秒前
10秒前
上官若男应助热情千风采纳,获得10
11秒前
科研通AI2S应助快乐大炮采纳,获得10
12秒前
JamesPei应助地道的反差萌采纳,获得30
13秒前
13秒前
咖啡续命完成签到 ,获得积分10
13秒前
14秒前
14秒前
丘比特应助碧蓝小蜜蜂采纳,获得10
17秒前
穆一手发布了新的文献求助10
17秒前
季夏完成签到,获得积分10
17秒前
18秒前
赘婿应助做事不太冷静采纳,获得10
19秒前
21秒前
23秒前
shitou完成签到,获得积分10
24秒前
CY发布了新的文献求助10
25秒前
25秒前
LC给LC的求助进行了留言
27秒前
28秒前
29秒前
29秒前
研友_VZG7GZ应助coolkid采纳,获得10
30秒前
Jian完成签到,获得积分10
30秒前
科研通AI2S应助CY采纳,获得10
30秒前
辰星发布了新的文献求助10
31秒前
33秒前
35秒前
36秒前
隐形曼青应助kento采纳,获得30
36秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141258
求助须知:如何正确求助?哪些是违规求助? 2792257
关于积分的说明 7801943
捐赠科研通 2448459
什么是DOI,文献DOI怎么找? 1302536
科研通“疑难数据库(出版商)”最低求助积分说明 626638
版权声明 601237