Identification of intrinsic hepatotoxic compounds in Polygonum multiflorum Thunb. using machine-learning methods

支持向量机 人工智能 传统医学 生物信息学 机器学习 草本植物 鉴定(生物学) 医学 草药 化学 生物 计算机科学 生物化学 植物 基因
作者
Xiaowen Hu,Tingting Du,Shengyun Dai,Feng Wei,Xiao-Guang Chen,Shuang-Cheng Ma
出处
期刊:Journal of Ethnopharmacology [Elsevier]
卷期号:298: 115620-115620 被引量:10
标识
DOI:10.1016/j.jep.2022.115620
摘要

Polygonum multiflorum Thunb. (PM) is a herb, extracts of which have been used as Chinese medicine for years. Although it is believed to be beneficial to the liver, heart, and kidneys, it causes idiosyncratic drug-induced liver injury (DILI).We propose that the intrinsic DILI caused by natural products in PM (NPPM) is an important complementary mechanism to PM-related herb-induced liver injury, and aim to identify the ingredients with high DILI potential by machine learning methods.One hundred and ninety-seven NPPM were collected from the literature to identify the intrinsic hepatotoxic compounds. Additionally, a DILI-labeled dataset consisting of 2384 compounds was collected and randomly split into training and test sets. A diparametric optimization method was developed to tune the parameters of extended-connectivity fingerprints (ECFPs), Rdkit, and atom-pair fingerprints as well as those of machine-learning (ML) algorithms. Subsequently, K means were employed to cluster the NPPM that were predicted to have a high DILI risk. An in vitro cell-viability assay was performed using HepaRG cells to validate the prediction results.ECFPs with the top 35% of features ranked by the F-value with support vector machine (SVM) yielded the best performance. The optimized SVM model achieved an accuracy of 0.761 and recall value of 0.834 on the test dataset. The silico screening for NPPM resulted in 47 ingredients with high DILI potential, which were clustered into six groups based on the elbow method. A representative subgroup that contained 21 ingredients, of which two dianthrones exhibited the lowest IC50 value (0.7-0.9 μM) and anthraquinones showed moderate toxicity (15-25 μM), was constructed.Using ML methods and in vitro screening, two classes of compounds, dianthrones and anthraquinones, were predicted and validated to have a high risk of DILI. The diparametric optimization method used in this study could provide a useful and powerful tool to screen toxicants for large datasets and is available at https://github.com/dreadlesss/Hepatotoxicity_predictor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粗暴的达发布了新的文献求助10
刚刚
刚刚
Mr_老旭完成签到,获得积分10
刚刚
Akari完成签到,获得积分10
1秒前
想飞的猫完成签到,获得积分10
1秒前
所所应助琪琪扬扬采纳,获得10
1秒前
north完成签到,获得积分10
2秒前
Li818完成签到,获得积分10
2秒前
刘钱美子完成签到,获得积分10
2秒前
2秒前
爆米花应助夏侯觅风采纳,获得10
3秒前
孤傲的静脉完成签到,获得积分10
3秒前
阿芙乐尔完成签到 ,获得积分10
3秒前
纵马长歌完成签到,获得积分10
3秒前
tjpuzhang完成签到 ,获得积分10
3秒前
逝水无痕完成签到,获得积分10
3秒前
uu发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
卷王完成签到,获得积分10
4秒前
Anyemzl完成签到,获得积分10
5秒前
阿玖完成签到 ,获得积分10
5秒前
5秒前
monocle发布了新的文献求助10
5秒前
tinna完成签到,获得积分10
5秒前
你好发布了新的文献求助10
6秒前
明亮紫易完成签到,获得积分10
6秒前
zh完成签到,获得积分10
6秒前
科研一坤年完成签到,获得积分10
7秒前
Liu发布了新的文献求助10
7秒前
xxl完成签到,获得积分10
7秒前
KL发布了新的文献求助10
7秒前
瑞克五代完成签到,获得积分10
8秒前
8秒前
chloe完成签到,获得积分10
8秒前
迷你的雅霜完成签到,获得积分10
8秒前
炸鸡加热完成签到,获得积分10
8秒前
浮游应助酒酿是也采纳,获得10
9秒前
TH完成签到 ,获得积分10
9秒前
Zhangll完成签到,获得积分10
9秒前
维奈克拉应助yy111采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977