Identification of intrinsic hepatotoxic compounds in Polygonum multiflorum Thunb. using machine-learning methods

支持向量机 人工智能 传统医学 生物信息学 机器学习 草本植物 鉴定(生物学) 医学 草药 化学 生物 计算机科学 生物化学 植物 基因
作者
Xiaowen Hu,Tingting Du,Shengyun Dai,Feng Wei,Xiaoguang Chen,Shuang‐Cheng Ma
出处
期刊:Journal of Ethnopharmacology [Elsevier BV]
卷期号:298: 115620-115620 被引量:9
标识
DOI:10.1016/j.jep.2022.115620
摘要

Polygonum multiflorum Thunb. (PM) is a herb, extracts of which have been used as Chinese medicine for years. Although it is believed to be beneficial to the liver, heart, and kidneys, it causes idiosyncratic drug-induced liver injury (DILI).We propose that the intrinsic DILI caused by natural products in PM (NPPM) is an important complementary mechanism to PM-related herb-induced liver injury, and aim to identify the ingredients with high DILI potential by machine learning methods.One hundred and ninety-seven NPPM were collected from the literature to identify the intrinsic hepatotoxic compounds. Additionally, a DILI-labeled dataset consisting of 2384 compounds was collected and randomly split into training and test sets. A diparametric optimization method was developed to tune the parameters of extended-connectivity fingerprints (ECFPs), Rdkit, and atom-pair fingerprints as well as those of machine-learning (ML) algorithms. Subsequently, K means were employed to cluster the NPPM that were predicted to have a high DILI risk. An in vitro cell-viability assay was performed using HepaRG cells to validate the prediction results.ECFPs with the top 35% of features ranked by the F-value with support vector machine (SVM) yielded the best performance. The optimized SVM model achieved an accuracy of 0.761 and recall value of 0.834 on the test dataset. The silico screening for NPPM resulted in 47 ingredients with high DILI potential, which were clustered into six groups based on the elbow method. A representative subgroup that contained 21 ingredients, of which two dianthrones exhibited the lowest IC50 value (0.7-0.9 μM) and anthraquinones showed moderate toxicity (15-25 μM), was constructed.Using ML methods and in vitro screening, two classes of compounds, dianthrones and anthraquinones, were predicted and validated to have a high risk of DILI. The diparametric optimization method used in this study could provide a useful and powerful tool to screen toxicants for large datasets and is available at https://github.com/dreadlesss/Hepatotoxicity_predictor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心的太清完成签到,获得积分10
1秒前
2秒前
qiqi发布了新的文献求助10
3秒前
糖脎发布了新的文献求助10
3秒前
专一的映容完成签到,获得积分10
3秒前
透明的世界完成签到,获得积分10
3秒前
新新新新新发顶刊完成签到 ,获得积分10
5秒前
邓代容完成签到,获得积分10
6秒前
星空完成签到 ,获得积分10
6秒前
Yxy2021完成签到 ,获得积分10
6秒前
akihi发布了新的文献求助10
7秒前
我爱学习完成签到,获得积分10
12秒前
yu完成签到 ,获得积分10
12秒前
慕容飞凤完成签到,获得积分10
13秒前
跳跃太清完成签到 ,获得积分10
16秒前
livra1058完成签到,获得积分10
17秒前
waitstill完成签到,获得积分10
18秒前
cxdhxu完成签到 ,获得积分10
18秒前
19秒前
Flyzhang完成签到,获得积分10
19秒前
整点儿薯条完成签到,获得积分10
19秒前
freshman3005完成签到,获得积分10
19秒前
内向怀曼完成签到,获得积分10
19秒前
Tal完成签到,获得积分10
19秒前
犇骉完成签到,获得积分10
19秒前
wukebini完成签到,获得积分10
20秒前
20秒前
晓风完成签到,获得积分10
20秒前
20秒前
李健应助科研通管家采纳,获得10
23秒前
开心浩阑应助科研通管家采纳,获得20
23秒前
xzy998应助科研通管家采纳,获得10
23秒前
FashionBoy应助科研通管家采纳,获得10
23秒前
24秒前
沈彬彬发布了新的文献求助10
24秒前
犇骉发布了新的文献求助10
25秒前
温眼张完成签到,获得积分10
25秒前
莫等闲完成签到,获得积分10
27秒前
简单幸福完成签到 ,获得积分10
27秒前
金色天际线完成签到,获得积分10
28秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015737
求助须知:如何正确求助?哪些是违规求助? 3555681
关于积分的说明 11318391
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027