防御素
生物信息学
反平行(数学)
生物
突变体
肽
抗菌肽
肽序列
遗传学
氨基酸
序列比对
基因
蛋白质结构
计算生物学
生物化学
物理
量子力学
磁场
作者
Dipanjana Dhar,Debayan Dey
标识
DOI:10.1080/07391102.2022.2105957
摘要
Defensins are antimicrobial peptides consisting of intramolecular disulphide bonds in a complex folded arrangement of two or three antiparallel β-sheets with or without an α-helical structure. They are produced by a vast range of organisms being constitutively expressed or induced in various tissues against different stimuli like infection, injury or other inflammatory factors. Two classes of invertebrate defensin exist, namely CS-αβ and big defensin, the latter being predominantly present in molluscs. Intriguingly, an invertebrate big defensin gene has been hypothesized as the most probable ancestor of vertebrate β-defensins. Here, conserved residues were identified for both big defensin and β-defensin. In silico mutation on conserved amino acid positions of the β-defensin-like domain of big defensin from Crassostrea gigas was carried out to understand the effects of mutation on the structure and function of the protein. R64A and E71A have been identified as deleterious as well as destabilizing for the protein. Changes in amino acid network and aggregation propensity were also observed upon mutating these two charged residues. 100 ns molecular dynamics simulations of wild-type, R64A and E71A structures revealed significant conformational changes in the case of mutants. Furthermore, molecular docking highlighted the significance of R64 in ligand interaction. In conclusion, these results provide the first in-depth understanding of the structural and functional importance imparted by two conserved charged residues in the C-terminal region of big defensin. It also enhances the existing knowledge about this antimicrobial peptide for application in therapeutics and other aspects of protein engineering.Communicated by Ramaswamy H. Sarma
科研通智能强力驱动
Strongly Powered by AbleSci AI