Oncology dose optimization paradigms: knowledge gained and extrapolated from approved oncology therapeutics

医学 最大耐受剂量 有效剂量(辐射) 肿瘤科 人口 选择(遗传算法) 临床试验 内科学 核医学 计算机科学 环境卫生 人工智能
作者
Rajendar K. Mittapalli,Cen Guo,Stefanie K. Drescher,Donghua Yin
出处
期刊:Cancer Chemotherapy and Pharmacology [Springer Science+Business Media]
卷期号:90 (3): 207-216 被引量:18
标识
DOI:10.1007/s00280-022-04444-0
摘要

There has been increasing attention to dose optimization in the development of targeted oncology therapeutics. The current report has analyzed the dose selection approaches for 116 new molecular entities (NMEs) approved for oncology indications by the US FDA from 2010 to August 2021, with the goal to extract learnings about the ways to select the optimal dose. The analysis showed that: (1) the initial label dose was lower than the maximum tolerated dose (MTD) or maximum studied dose (MSD) in Phase 1 for the majority of approved NMEs, and that the MTD approach is no longer the mainstay for dose selection; (2) there was no dose ranging or optimization beyond Phase 1 dose escalation for ~ 80% of the NMEs; (3) integrated dose/exposure–response analyses were commonly used to justify the dose selection; (4) lack of dose optimization led to dose-related PMRs/PMCs in 14% of cases, but 82% of these did not result in change of the initial label dose; and (5) depending on properties of the NME and specific benefit/risk considerations for the target patient population, there could be different dose selection paradigms leading to identification of the appropriate clinical dose. The analysis supports the need to incorporate more robust dose optimization during oncology clinical development, through comparative assessment of benefit/risk of multiple dose levels, over a wide exposure range using therapeutically relevant endpoints and adequate sample size. On the other hand, in certain cases, data from FIP dose escalation may be adequate to support the dose selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
今后应助Jeffery426采纳,获得10
刚刚
放空完成签到,获得积分10
刚刚
lililili发布了新的文献求助10
1秒前
赘婿应助开朗的睫毛膏采纳,获得10
1秒前
麻辣小龙虾完成签到,获得积分10
2秒前
3秒前
轻狂书生发布了新的文献求助10
4秒前
4秒前
科研废物发布了新的文献求助10
4秒前
微笑以南完成签到,获得积分10
5秒前
wyq完成签到,获得积分10
6秒前
白开水完成签到,获得积分10
7秒前
7秒前
lakeisha发布了新的文献求助10
8秒前
wan完成签到 ,获得积分10
11秒前
karyoter完成签到,获得积分10
13秒前
13秒前
情怀应助科研通管家采纳,获得10
14秒前
小马甲应助科研通管家采纳,获得10
14秒前
zho应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
14秒前
zho应助科研通管家采纳,获得10
14秒前
上官若男应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
无花果应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
爆米花应助科研通管家采纳,获得10
15秒前
852应助科研通管家采纳,获得10
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
16秒前
17秒前
17秒前
20秒前
爱睡午觉发布了新的文献求助10
22秒前
复杂的棒球完成签到,获得积分10
23秒前
科研通AI6应助星星采纳,获得10
24秒前
爱睡午觉完成签到,获得积分10
28秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5203698
求助须知:如何正确求助?哪些是违规求助? 4383107
关于积分的说明 13648087
捐赠科研通 4240691
什么是DOI,文献DOI怎么找? 2326584
邀请新用户注册赠送积分活动 1324220
关于科研通互助平台的介绍 1276296