Oncology dose optimization paradigms: knowledge gained and extrapolated from approved oncology therapeutics

医学 最大耐受剂量 有效剂量(辐射) 肿瘤科 人口 选择(遗传算法) 临床试验 内科学 核医学 计算机科学 环境卫生 人工智能
作者
Rajendar K. Mittapalli,Cen Guo,Stefanie K. Drescher,Donghua Yin
出处
期刊:Cancer Chemotherapy and Pharmacology [Springer Science+Business Media]
卷期号:90 (3): 207-216 被引量:18
标识
DOI:10.1007/s00280-022-04444-0
摘要

There has been increasing attention to dose optimization in the development of targeted oncology therapeutics. The current report has analyzed the dose selection approaches for 116 new molecular entities (NMEs) approved for oncology indications by the US FDA from 2010 to August 2021, with the goal to extract learnings about the ways to select the optimal dose. The analysis showed that: (1) the initial label dose was lower than the maximum tolerated dose (MTD) or maximum studied dose (MSD) in Phase 1 for the majority of approved NMEs, and that the MTD approach is no longer the mainstay for dose selection; (2) there was no dose ranging or optimization beyond Phase 1 dose escalation for ~ 80% of the NMEs; (3) integrated dose/exposure–response analyses were commonly used to justify the dose selection; (4) lack of dose optimization led to dose-related PMRs/PMCs in 14% of cases, but 82% of these did not result in change of the initial label dose; and (5) depending on properties of the NME and specific benefit/risk considerations for the target patient population, there could be different dose selection paradigms leading to identification of the appropriate clinical dose. The analysis supports the need to incorporate more robust dose optimization during oncology clinical development, through comparative assessment of benefit/risk of multiple dose levels, over a wide exposure range using therapeutically relevant endpoints and adequate sample size. On the other hand, in certain cases, data from FIP dose escalation may be adequate to support the dose selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理向秋发布了新的文献求助30
1秒前
1秒前
田様应助王岩采纳,获得10
1秒前
落后的可仁完成签到,获得积分10
1秒前
TCL发布了新的文献求助10
1秒前
义气的雪珍关注了科研通微信公众号
1秒前
2秒前
Akim应助ldp采纳,获得10
3秒前
哈哈发布了新的文献求助10
3秒前
赘婿应助lyh采纳,获得10
3秒前
EliotFang应助搬石头采纳,获得30
4秒前
科研通AI6应助cyan采纳,获得30
4秒前
5秒前
5秒前
5秒前
5秒前
hhh发布了新的文献求助10
6秒前
6秒前
6秒前
老实的乐儿完成签到 ,获得积分10
6秒前
7秒前
8秒前
8秒前
8秒前
NexusExplorer应助极光采纳,获得10
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
所所应助johnrambo0625采纳,获得10
10秒前
荔枝味果冻完成签到,获得积分10
11秒前
11秒前
多情易蓉完成签到,获得积分10
11秒前
泉水叮咚发布了新的文献求助10
11秒前
fhl发布了新的文献求助10
12秒前
英吉利25发布了新的文献求助10
12秒前
瞿霞发布了新的文献求助10
12秒前
12秒前
LARS发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
Elgar Concise Encyclopedia of Polar Law 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4905784
求助须知:如何正确求助?哪些是违规求助? 4183599
关于积分的说明 12990865
捐赠科研通 3949812
什么是DOI,文献DOI怎么找? 2166128
邀请新用户注册赠送积分活动 1184660
关于科研通互助平台的介绍 1090941