亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Pseudo Complex-Valued Deformable ConvLSTM Neural Network With Mutual Attention Learning for Hyperspectral Image Classification

人工智能 计算机科学 可解释性 深度学习 模式识别(心理学) 高光谱成像 卷积神经网络 人工神经网络 机器学习
作者
Wen-Shuai Hu,Heng-Chao Li,Rui Wang,Feng Gao,Qian Du,Antonio Plaza
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-17 被引量:3
标识
DOI:10.1109/tgrs.2022.3188791
摘要

Convolutional long short-term memory (ConvLSTM) has received much attention for hyperspectral image (HSI) classification due to its ability of modeling long-range correlations, which, however, is vulnerable to too many parameters and insufficient training, limiting its classification accuracy, especially for small samples. Different from it, traditional hand-crafted methods extract the features with basic attributes of HSIs, which can provide the lack of details and interpretability of deep semantic features. However, existing methods fail to incorporate their complementarity for HSI classification. As such, a Pseudo complex-valued (CV) Deformable ConvLSTM Neural Network with mutual Attention learning (APDCLNN) is proposed, providing a new way to realize the collaborative learning of hand-crafted and deep features for HSI classification. First, a 2-D pseudo CV deformable ConvLSTM (PDConvLSTM2D) cell is designed using deformable convolution and complex operations, with which a spatial–spectral PDConvLSTM2D neural network (SSPDCL2DNN) is built to extract scale- and spectral-enhanced deep spatial–spectral features. Then, 3-D Gabor filter is used to extract hand-crafted features, and a mutual attention-based multimodality feature learning and fusion (MAMLF) module is designed to integrate them into deep features for training and optimization of SSPDCL2DNN. Finally, an attention loss subnetwork is designed to refine the classification results. As we know, this is the first attempt to apply the idea of mutual attention learning to fuse hand-crafted and deep features for HSI classification. Extensive experiments on three widely used HSI datasets show the advantages of our model over other deep methods in terms of both quantitative and visual quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DrCuiTianjin完成签到 ,获得积分10
14秒前
1分钟前
1分钟前
lik发布了新的文献求助10
1分钟前
1分钟前
科研通AI2S应助lik采纳,获得10
1分钟前
小巫发布了新的文献求助10
1分钟前
dolphin完成签到 ,获得积分0
1分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
小巫发布了新的文献求助10
3分钟前
Jasper应助cheesy采纳,获得10
3分钟前
去去去去发布了新的文献求助10
3分钟前
3分钟前
cheesy发布了新的文献求助10
3分钟前
3分钟前
FMHChan完成签到,获得积分10
3分钟前
风信子deon01完成签到,获得积分10
3分钟前
4分钟前
于洋完成签到 ,获得积分10
4分钟前
ZhJF完成签到 ,获得积分10
4分钟前
充电宝应助科研通管家采纳,获得10
4分钟前
半岛岛发布了新的文献求助10
5分钟前
科研通AI2S应助athena采纳,获得10
5分钟前
斯文败类应助去去去去采纳,获得10
6分钟前
小叶完成签到 ,获得积分10
6分钟前
sallltyyy完成签到,获得积分10
6分钟前
kuoping完成签到,获得积分10
6分钟前
半岛岛完成签到,获得积分10
6分钟前
6分钟前
6分钟前
去去去去发布了新的文献求助10
6分钟前
6分钟前
6分钟前
lanxinyue应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
7分钟前
Amen完成签到,获得积分10
7分钟前
7分钟前
7分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139573
求助须知:如何正确求助?哪些是违规求助? 2790458
关于积分的说明 7795318
捐赠科研通 2446925
什么是DOI,文献DOI怎么找? 1301511
科研通“疑难数据库(出版商)”最低求助积分说明 626248
版权声明 601159