亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A New Perspective on Traffic Flow Prediction: A Graph Spatial-Temporal Network with Complex Network Information

中间性中心性 计算机科学 复杂网络 中心性 数据挖掘 聚类系数 网络流量模拟 网络科学 平均路径长度 交通生成模型 图形 人工智能 最短路径问题 聚类分析 网络流量控制 理论计算机科学 实时计算 数学 计算机网络 组合数学 万维网 网络数据包
作者
Zhiqiu Hu,Fengjing Shao,Rencheng Sun
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:11 (15): 2432-2432 被引量:6
标识
DOI:10.3390/electronics11152432
摘要

Traffic flow prediction provides support for travel management, vehicle scheduling, and intelligent transportation system construction. In this work, a graph space–time network (GSTNCNI), incorporating complex network feature information, is proposed to predict future highway traffic flow time series. Firstly, a traffic complex network model using traffic big data is established, the topological features of traffic road networks are then analyzed using complex network theory, and finally, the topological features are combined with graph neural networks to explore the roles played by the topological features of 97 traffic network nodes. Consequently, six complex network properties are discussed, namely, degree centrality, clustering coefficient, closeness centrality, betweenness centrality, point intensity, and shortest average path length. This study improves the graph convolutional neural network based on the above six complex network properties and proposes a graph spatial–temporal network consisting of a combination of several complex network properties. By comparison with existing baselines containing graph convolutional neural networks, it is verified that GSTNCNI possesses high traffic flow prediction accuracy and robustness. In addition, ablation experiments are conducted for six different complex network features to verify the effect of different complex network features on the model’s prediction accuracy. Experimental analysis indicates that the model with combined multiple complex network features has a higher prediction accuracy, and its performance is improved by 31.46% on average, compared with the model containing only one complex network feature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yaoz完成签到,获得积分10
7秒前
7秒前
Anto完成签到,获得积分20
21秒前
bkagyin应助科研通管家采纳,获得10
32秒前
iman完成签到,获得积分10
40秒前
40秒前
无辜笑容发布了新的文献求助10
47秒前
从容芮完成签到,获得积分0
54秒前
1分钟前
1分钟前
苹果发布了新的文献求助10
1分钟前
caca完成签到,获得积分0
1分钟前
大模型应助cube半肥半瘦采纳,获得10
1分钟前
chichqq发布了新的文献求助30
1分钟前
1分钟前
乐乐应助chichqq采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
小岩完成签到 ,获得积分10
1分钟前
李志全完成签到 ,获得积分10
2分钟前
齐阳春完成签到 ,获得积分10
2分钟前
时尚战斗机应助iman采纳,获得30
2分钟前
忧伤的绍辉完成签到 ,获得积分10
2分钟前
舒服的吗喽完成签到,获得积分10
2分钟前
金钰贝儿完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Ava应助远枫orz采纳,获得30
2分钟前
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
2分钟前
hh发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
TXZ06发布了新的文献求助30
2分钟前
3分钟前
方悦完成签到 ,获得积分10
3分钟前
3分钟前
Lucas应助Janusfaces采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
herococa应助科研通管家采纳,获得60
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957025
求助须知:如何正确求助?哪些是违规求助? 3503050
关于积分的说明 11111175
捐赠科研通 3234068
什么是DOI,文献DOI怎么找? 1787710
邀请新用户注册赠送积分活动 870748
科研通“疑难数据库(出版商)”最低求助积分说明 802250