Impact of Large Gate Voltages and Ultrathin Polymer Electrolytes on Carrier Density in Electric-Double-Layer-Gated Two-Dimensional Crystal Transistors

材料科学 晶体管 电解质 光电子学 量子电容 半导体 电场 电压降 电容 电压 电子迁移率 场效应晶体管 纳米技术 电气工程 电极 物理 工程类 量子力学
作者
Shubham Sukumar Awate,Brendan Mostek,Shalini Kumari,Chengye Dong,Joshua A. Robinson,Ke Xu,Susan K. Fullerton‐Shirey
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (12): 15785-15796 被引量:3
标识
DOI:10.1021/acsami.2c13140
摘要

Electric-double-layer (EDL) gating can induce large capacitance densities (∼1–10 μF cm–2) in two-dimensional (2D) semiconductors; however, several properties of the electrolyte limit performance. One property is the electrochemical activity which limits the gate voltage (VG) that can be applied and therefore the maximum extent to which carriers can be modulated. A second property is electrolyte thickness, which sets the response speed of the EDL gate and therefore the time scale over which the channel can be doped. Typical thicknesses are on the order of micrometers, but thinner electrolytes (nanometers) are needed for very-large-scale-integration (VLSI) in terms of both physical thickness and the speed that accompanies scaling. In this study, finite element modeling of an EDL-gated field-effect transistor (FET) is used to self-consistently couple ion transport in the electrolyte to carrier transport in the semiconductor, in which density of states, and therefore quantum capacitance, is included. The model reveals that 50 to 65% of the applied potential drops across the semiconductor, leaving 35 to 50% to drop across the two EDLs. Accounting for the potential drop in the channel suggests that higher carrier densities can be achieved at larger applied VG without concern for inducing electrochemical reactions. This insight is tested experimentally via Hall measurements of graphene FETs for which VG is extended from ±3 to ±6 V. Doubling the gate voltage increases the sheet carrier density by an additional 2.3 × 1013 cm–2 for electrons and 1.4 × 1013 cm–2 for holes without inducing electrochemistry. To address the need for thickness scaling, the thickness of the solid polymer electrolyte, poly(ethylene oxide) (PEO):CsClO4, is decreased from 1 μm to 10 nm and used to EDL gate graphene FETs. Sheet carrier density measurements on graphene Hall bars prove that the carrier densities remain constant throughout the measured thickness range (10 nm–1 μm). The results indicate promise for overcoming the physical and electrical limitations to VLSI while taking advantage of the ultrahigh carrier densities induced by EDL gating.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助彩色垣采纳,获得10
刚刚
龙仔发布了新的文献求助10
1秒前
SYLH应助yangg采纳,获得10
1秒前
避尘完成签到 ,获得积分10
1秒前
六六完成签到,获得积分10
2秒前
科研小菜完成签到,获得积分10
2秒前
温冰雪应助lwww423采纳,获得10
2秒前
3秒前
3秒前
NexusExplorer应助racill采纳,获得10
3秒前
在水一方应助龙仔采纳,获得10
4秒前
4秒前
5秒前
5秒前
wangwangwang发布了新的文献求助10
6秒前
HOLLYWOO完成签到,获得积分10
6秒前
misalia完成签到,获得积分10
7秒前
蛋宝完成签到,获得积分10
7秒前
科研小南完成签到 ,获得积分10
7秒前
SYLH应助开放磬采纳,获得10
9秒前
田様应助ee采纳,获得10
9秒前
研友_VZG64n发布了新的文献求助10
9秒前
10秒前
MY完成签到,获得积分20
11秒前
11秒前
尾气是菠萝口味完成签到,获得积分10
12秒前
12秒前
13秒前
李李李李李完成签到,获得积分10
13秒前
14秒前
锦鲤完成签到,获得积分10
14秒前
不奢完成签到 ,获得积分10
15秒前
阳小颖发布了新的文献求助10
16秒前
研友_851KE8发布了新的文献求助10
17秒前
骑着蜗牛追导弹应助Hao采纳,获得10
17秒前
17秒前
锦鲤发布了新的文献求助10
18秒前
阿月完成签到,获得积分10
18秒前
Orange应助帆帆采纳,获得10
19秒前
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951173
求助须知:如何正确求助?哪些是违规求助? 3496521
关于积分的说明 11082942
捐赠科研通 3226974
什么是DOI,文献DOI怎么找? 1784145
邀请新用户注册赠送积分活动 868219
科研通“疑难数据库(出版商)”最低求助积分说明 801089