Impact of Large Gate Voltages and Ultrathin Polymer Electrolytes on Carrier Density in Electric-Double-Layer-Gated Two-Dimensional Crystal Transistors

材料科学 晶体管 电解质 光电子学 量子电容 半导体 电场 电压降 电容 电压 电子迁移率 场效应晶体管 纳米技术 电气工程 电极 物理 量子力学 工程类
作者
Shubham Sukumar Awate,Brendan Mostek,Shalini Kumari,Chengye Dong,Joshua A. Robinson,Ke Xu,Susan K. Fullerton‐Shirey
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (12): 15785-15796 被引量:3
标识
DOI:10.1021/acsami.2c13140
摘要

Electric-double-layer (EDL) gating can induce large capacitance densities (∼1–10 μF cm–2) in two-dimensional (2D) semiconductors; however, several properties of the electrolyte limit performance. One property is the electrochemical activity which limits the gate voltage (VG) that can be applied and therefore the maximum extent to which carriers can be modulated. A second property is electrolyte thickness, which sets the response speed of the EDL gate and therefore the time scale over which the channel can be doped. Typical thicknesses are on the order of micrometers, but thinner electrolytes (nanometers) are needed for very-large-scale-integration (VLSI) in terms of both physical thickness and the speed that accompanies scaling. In this study, finite element modeling of an EDL-gated field-effect transistor (FET) is used to self-consistently couple ion transport in the electrolyte to carrier transport in the semiconductor, in which density of states, and therefore quantum capacitance, is included. The model reveals that 50 to 65% of the applied potential drops across the semiconductor, leaving 35 to 50% to drop across the two EDLs. Accounting for the potential drop in the channel suggests that higher carrier densities can be achieved at larger applied VG without concern for inducing electrochemical reactions. This insight is tested experimentally via Hall measurements of graphene FETs for which VG is extended from ±3 to ±6 V. Doubling the gate voltage increases the sheet carrier density by an additional 2.3 × 1013 cm–2 for electrons and 1.4 × 1013 cm–2 for holes without inducing electrochemistry. To address the need for thickness scaling, the thickness of the solid polymer electrolyte, poly(ethylene oxide) (PEO):CsClO4, is decreased from 1 μm to 10 nm and used to EDL gate graphene FETs. Sheet carrier density measurements on graphene Hall bars prove that the carrier densities remain constant throughout the measured thickness range (10 nm–1 μm). The results indicate promise for overcoming the physical and electrical limitations to VLSI while taking advantage of the ultrahigh carrier densities induced by EDL gating.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
cqsuper完成签到,获得积分10
2秒前
10秒前
jerseyxin发布了新的文献求助10
16秒前
英吉利25发布了新的文献求助10
17秒前
hy完成签到 ,获得积分10
19秒前
fomo完成签到,获得积分10
19秒前
陈槊诸完成签到 ,获得积分10
23秒前
lee完成签到 ,获得积分0
24秒前
11完成签到 ,获得积分10
24秒前
jerseyxin完成签到,获得积分10
24秒前
太叔丹翠完成签到 ,获得积分10
25秒前
shouz完成签到,获得积分10
38秒前
hadfunsix完成签到 ,获得积分10
40秒前
42秒前
44秒前
YJ完成签到 ,获得积分10
45秒前
hwa完成签到,获得积分10
46秒前
marc107发布了新的文献求助10
47秒前
争当科研巨匠完成签到,获得积分10
47秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
简单应助科研通管家采纳,获得10
50秒前
浮游应助科研通管家采纳,获得10
50秒前
浮游应助科研通管家采纳,获得10
50秒前
萧萧应助科研通管家采纳,获得10
51秒前
浮游应助科研通管家采纳,获得10
51秒前
简单应助科研通管家采纳,获得10
51秒前
浮游应助科研通管家采纳,获得10
51秒前
共享精神应助科研通管家采纳,获得10
51秒前
萧萧应助科研通管家采纳,获得10
51秒前
简单应助科研通管家采纳,获得10
51秒前
李y梅子完成签到 ,获得积分10
51秒前
开放飞阳完成签到,获得积分10
51秒前
darcy完成签到,获得积分10
51秒前
Astra完成签到,获得积分10
54秒前
步步高完成签到,获得积分10
55秒前
奥丁不言语完成签到 ,获得积分10
57秒前
CLTTTt完成签到,获得积分10
58秒前
Loey完成签到,获得积分10
59秒前
西宁完成签到,获得积分10
1分钟前
HopeLee完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498606
求助须知:如何正确求助?哪些是违规求助? 4595782
关于积分的说明 14449763
捐赠科研通 4528763
什么是DOI,文献DOI怎么找? 2481697
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438559