亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Multidepth and Multibranch Network for Hyperspectral Target Detection Based on Band Selection

高光谱成像 计算机科学 冗余(工程) 人工智能 模式识别(心理学) 特征提取 一般化 突出 光谱带 特征选择 遥感 数学 操作系统 地质学 数学分析
作者
Hongmin Gao,Yitong Zhang,Zhonghao Chen,Shufang Xu,Danfeng Hong,Bing Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-18 被引量:4
标识
DOI:10.1109/tgrs.2023.3258061
摘要

Deep learning (DL) has recently risen to prominence in hyperspectral target detection (HTD). Nevertheless, how to tackle the extreme training sample imbalance together with achieving target highlighting and background suppression is challenging. Additionally, due to the spectral redundancy of hyperspectral imagery (HSI), it is a new course for HTD through band selection (BS) to retain crucial bands thereupon improving the subsequent detection performance. Accordingly, we propose a DL-based BS-HTD (DLBSTD) algorithm, incorporating DL-based BS with DL-based HTD for the first time. Most significantly, a multi-depth and multi-branch network (MDBN) for HTD based on a novel BS method is proposed. First of all, the BS method including an alternating local-global reconstruction network (ALGRN) and a correlation measurement strategy provides representative bands containing key target information for MDBN. For the training sample imbalance of MDBN, we develop a BS-based method to select multifarious representative background training samples and propose a target band random substitution (TBRS) strategy to augment an ample target training set. Lastly, the MDBN composed of a multi-depth feature extraction (MDFE) module, three fusion strategies, and the parallel local convolution and gated recurrent unit (Conv-GRU) fully taps the spectral feature relationships to highlight targets and suppress backgrounds. Compared with nine competitive HTD algorithms, we carry out plentiful experiments on four classical datasets exhibiting that the proposed DLBSTD has strong generalization and salient detection performance of target highlighting and background suppression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
11秒前
42秒前
ATEVYG完成签到 ,获得积分10
43秒前
量子星尘发布了新的文献求助10
55秒前
1分钟前
1分钟前
1分钟前
白嫖论文完成签到 ,获得积分10
1分钟前
FashionBoy应助小狗采纳,获得10
2分钟前
XQQDD完成签到,获得积分10
2分钟前
WerWu完成签到,获得积分10
2分钟前
炸鸡完成签到 ,获得积分10
2分钟前
Akim应助茶烟梧月采纳,获得30
2分钟前
2分钟前
2分钟前
地表飞猪应助zhouleiwang采纳,获得10
2分钟前
量子星尘发布了新的文献求助50
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
zhouleiwang完成签到,获得积分10
3分钟前
3分钟前
chcmy完成签到 ,获得积分0
3分钟前
3分钟前
4分钟前
茶烟梧月完成签到,获得积分10
4分钟前
茶烟梧月发布了新的文献求助30
4分钟前
斯文的难破完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助50
4分钟前
4分钟前
hh完成签到,获得积分20
4分钟前
4分钟前
mickaqi完成签到 ,获得积分10
4分钟前
4分钟前
汉堡包应助hh采纳,获得10
4分钟前
haralee完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960135
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128683
捐赠科研通 3238299
什么是DOI,文献DOI怎么找? 1789690
邀请新用户注册赠送积分活动 871870
科研通“疑难数据库(出版商)”最低求助积分说明 803069